Advanced Search+
Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02
Citation: Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02

Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code

  • A theory-based model for predicting the pedestal formation in both ion and electron temperatures, and hydrogenic and impurity density is developed and implemented in the 1.5D BALDUR codes for self-consistently simulating H-mode plasma in tokamak. In the simulation, the transports around pedestal, including the electron and ion thermal, hydrogenic and impurity particle transports are calculated using an anomalous semi-empirical mixed Bohm/gyro-Bohm (Mixed B/gB) model, which is modified to include the effects of ΩE×B flow shear and magnetic shear. Because of the reduction of transport, the pedestal can be formed. For a preliminary test, this core-edge model is used to simulate the temporal evolution of plasma current, temperature, and density profiles for DIII-D discharges. It is found that the simulations successfully reproduce the experimental results. A statistical analysis, including RMSE and offset, is used to quantify the agreement between the prediction and the corresponding experimental results. The simulation results show an agreement with average RMSE of 11.87%, 14.53%, 7.59% and 12.21% for electron temperature, ion temperature, electron density, and deuterium density profiles, respectively. In addition, it is found that the suppression function developed is effective only in the edge region.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return