Advanced Search+
MIAO Feng (苗峰), ZHENG Xianjun (曾宪俊), DENG Baiquan (邓柏权). Nuclear Fusion Within Extremely Dense Plasma Enhanced by Quantum Particle Waves[J]. Plasma Science and Technology, 2015, 17(5): 366-371. DOI: 10.1088/1009-0630/17/5/03
Citation: MIAO Feng (苗峰), ZHENG Xianjun (曾宪俊), DENG Baiquan (邓柏权). Nuclear Fusion Within Extremely Dense Plasma Enhanced by Quantum Particle Waves[J]. Plasma Science and Technology, 2015, 17(5): 366-371. DOI: 10.1088/1009-0630/17/5/03

Nuclear Fusion Within Extremely Dense Plasma Enhanced by Quantum Particle Waves

  • Quantum effects play an enhancement role in p-p chain reactions occurring within stars. Such an enhancement is quantified by a wave penetration factor that is proportional to the density of the participating fuel particles. This leads to an innovative theory for dense plasma, and its result shows good agreement with independent data derived from the solar energy output. An analysis of the first Z-pinch machine in mankind’s history exhibiting neutron emission leads to a derived deuterium plasma beam density greater than that of water, with plasma velocities exceeding 10000 km/s. Fusion power could be achieved by the intersection of four such pinched plasma beams with powerful head-on collisions in their common focal region due to the beam and target enhanced reaction.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return