Advanced Search+
A M EL SHERBINI, M M HAGRASS, M R M RIZK, E A EL-BADAWY. Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths[J]. Plasma Science and Technology, 2019, 21(1): 15502-015502. DOI: 10.1088/2058-6272/aadf7e
Citation: A M EL SHERBINI, M M HAGRASS, M R M RIZK, E A EL-BADAWY. Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths[J]. Plasma Science and Technology, 2019, 21(1): 15502-015502. DOI: 10.1088/2058-6272/aadf7e

Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths

  • Plasma ignition threshold of nanoparticle-based and bulk silver targets was measured in air. The plasma was initiated by a Nd:YAG laser at wavelengths of 355, 532, and 1064 nm. The plasma ignition was monitored utilizing the prominent Ag I line at 546.5 nm. Lower ignition thresholds of the nanoparticle-based silver target were estimated at 0.4±0.02, 0.34±0.04, and 0.27±0.035 J cm−2 coupled with the different laser wavelengths, respectively. In contrast, the bulk silver target plasma exhibited an order of magnitude higher ignition threshold. A three orders of magnitude enhanced emission intensity from the nano-based target over the bulk target was achieved at lower levels of laser irradiation. A reduction of the thermal diffusion length of the nanosilver was assumed in order to theoretically predict this reduction in the plasma threshold. In addition, the effect of self-reversal on the resonance lines was taken into consideration.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return