Advanced Search+
D C SEOK, S R YOO, K I LEE, Y S CHOI, Y H JUNG. Relation between etching profile and voltage–current shape of sintered SiC etching by atmospheric pressure plasma[J]. Plasma Science and Technology, 2019, 21(4): 45504-045504. DOI: 10.1088/2058-6272/aaf9e9
Citation: D C SEOK, S R YOO, K I LEE, Y S CHOI, Y H JUNG. Relation between etching profile and voltage–current shape of sintered SiC etching by atmospheric pressure plasma[J]. Plasma Science and Technology, 2019, 21(4): 45504-045504. DOI: 10.1088/2058-6272/aaf9e9

Relation between etching profile and voltage–current shape of sintered SiC etching by atmospheric pressure plasma

  • Sintered silicon carbide (SiC) was etched by a dielectric barrier discharge source. A high voltage bipolar pulse was used with helium gas for the plasma generation. One stable filament plasma was generated and could be used for SiC etching. As the processing gas (NF3) mixing rate increased, the width and depth of the etching profile became narrower and deeper. The differentiated V–Q Lissajous method was used for measuring the capacitances (Ceq) of the electrode after the plasma turned on. The width of the etching profile was proportional to Ceq. As the current peak value Ismx of the substrate current increased, the volume removal rate of SiC increased. The etch depth was proportional to the ratio of Ismx to Ceq. Additionally, because of the different characteristics of the plasma disks on SiC substrate by the voltage polarity, the etching profile was unstable. However, in high NF3 mixing process, the etching profile became stable and deeper.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return