Advanced Search+
Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35
Citation: Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35
  • In order to understand the mechanism by which the resonant magnetic perturbation (RMP) mitigates or suppresses the edge-localized mode (ELM), the topological study of the edge magnetic field in ELM mitigation or suppression phase is a critical issue. To model the three-dimensional magnetic field topology superposed RMP on Experimental Advanced Superconducting Tokamak, a numerical model using the field line tracing method for both vacuum and ideal plasma response approximations is proposed. Using the numerical model, the topological change and the penetration depth of the stochastic field lines in the edge magnetic field are studied in an RMP experiment. Comparing profiles of minimum ρ on edge stochastic field lines and the particle flux pattern, the ideal plasma response changes the field line penetration depth while remaining similar profile relative to vacuum approximation. To mitigate and suppress ELM strongly, the deep penetration of RMP fields and topological changes of the edge magnetic field is a key from our modeling.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return