Advanced Search+
Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Miao LIU (刘淼), Yitong LIU (刘奕彤), Qingxue LI (李庆雪), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Xun GAO (高勋), Mingxing JIN (金明星). Comparison of emission signals for different polarizations in femtosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(4): 45504-045504. DOI: 10.1088/2058-6272/abeb5d
Citation: Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Miao LIU (刘淼), Yitong LIU (刘奕彤), Qingxue LI (李庆雪), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Xun GAO (高勋), Mingxing JIN (金明星). Comparison of emission signals for different polarizations in femtosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(4): 45504-045504. DOI: 10.1088/2058-6272/abeb5d

Comparison of emission signals for different polarizations in femtosecond laser-induced breakdown spectroscopy

  • In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance (LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu (I) lines, indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laserinduced plasma.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return