Advanced Search+
Guanghui ZHU, Qing LI, Xuan SUN, Jianyuan XIAO, Jiangshan ZHENG, Hang LI. Particle simulations on propagation and resonance of lower hybrid wave launched by phased array antenna in linear devices[J]. Plasma Science and Technology, 2022, 24(7): 075102. DOI: 10.1088/2058-6272/ac5f80
Citation: Guanghui ZHU, Qing LI, Xuan SUN, Jianyuan XIAO, Jiangshan ZHENG, Hang LI. Particle simulations on propagation and resonance of lower hybrid wave launched by phased array antenna in linear devices[J]. Plasma Science and Technology, 2022, 24(7): 075102. DOI: 10.1088/2058-6272/ac5f80

Particle simulations on propagation and resonance of lower hybrid wave launched by phased array antenna in linear devices

  • In this work, we performed first-principles electromagnetic-kinetic simulations to study a phased antenna array and its interaction with deuterium plasmas within the lower hybrid range of frequency. We first gave wave accessibility and resonance results, which agree well with theoretical prediction. In addition, we further investigated the antenna power spectrum with different antenna phases in the presence of the plasma and compared it with that in a vacuum, which directly indicates wave coupling and plasma absorption. Furthermore, for the case with zero phasing difference, our simulation results show that, albeit the launch is away from the accessibility region, tunneling effect and mode conversion occurred, which enhanced coupling and absorption. Moreover, consistent interactions between the injected wave and the plasma concerning various antenna phase differences are shown. We presented the inchoate response of the plasma in terms of the launching directions. Our results could be favorable for the engineering design of wave heating experiments with a tunable phased antenna array in linear devices, such as simple magnetic mirrors or tandem mirrors.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return