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Abstract

In a tokamak fusion reactor operated at steady state, the equilibrium magnetic field is likely to
have reversed shear in the core region, as the noninductive bootstrap current profile generally
peaks off-axis. The reversed shear Alfvén eigenmode (RSAE) as a unique branch of the shear
Alfvén wave in this equilibrium, can exist with a broad spectrum in wavenumber and frequency,
and be resonantly driven unstable by energetic particles (EP). After briefly discussing the RSAE
linear properties in burning plasma condition, we review several key topics of the nonlinear
dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,
and illustrate their potentially important role in reactor-scale fusion plasmas. By means of
simplified hybrid MHD-kinetic simulations, the RSAEs are shown to have typically broad phase
space resonance structure with both circulating and trapped EP, as results of weak/vanishing
magnetic shear and relatively low frequency. Through the route of wave-EP nonlinearity, the
dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling
with the localized RSAE mode structure, and the resultant EP transport generally has a
convective feature. The saturated RSAEs also undergo various nonlinear couplings with other
collective oscillations. Two typical routes as parametric decay and modulational instability are
studied using nonlinear gyrokinetic theory, and applied to the scenario of spontaneous excitation
by a finite amplitude pump RSAE. Multiple RSAEs could naturally couple and induce the
spectral energy cascade into a low frequency Alfvénic mode, which may effectively transfer the
EP energy to fuel ions via collisionless Landau damping. Moreover, zero frequency zonal field
structure could be spontaneously excited by modulation of the pump RSAE envelope, and may
also lead to saturation of the pump RSAE by both scattering into stable domain and local
distortion of the continuum structure.

Keywords: reversed shear Alfvén eigenmode, energetic particle, nonlinear gyrokinetic theory,
saturation, burning plasma

(Some figures may appear in colour only in the online journal)

1. Introduction relation wj = kv, is a fundamental branch of electromag-

) ) ) ) netic fluctuations in strongly magnetized plasmas [1]. Here,
The shear Alfvén wave (SAW), described by the dispersion ky is the wavenumber parallel to the equilibrium magnetic
Present address: National Institute for Fusion Science, Toki, Gifu 509-5292, ﬁelq B, .and va = Bo/ 4Tmimi. is the A.lfven. speed. The
Japan particular interest on the SAW in magnetic fusion research,

* Author to whom any correspondence should be addressed. is mainly due to the possibility that they can be resonantly
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driven unstable by energetic particles (EP) [2], notably alpha
particles born from D-T fusion reactions and fast ions/elec-
trons generated by external heating. In turn, finite amplitude
SAW fluctuations induce anomalous EP transport, which
could degrade the heating and current drive efficiency [3]
and possibly damage the plasma facing components [4].
Indeed, significant unmitigated EP redistribution cannot be
tolerated in self-sustained burning plasmas such as the ITER
[5]. Thus, understanding the linear property, nonlinear satu-
ration and further evolution, as well as the eventual conse-
quences of the EP-driven SAW fluctuation is crucial for
achieving burning plasmas in the next generation devices. A
thorough theoretical review on the SAW and EP dynamics is
given by Chen and Zonca [2], where a generalized fishbone-
like dispersion relation (GFLDR) theoretical framework is
developed. The present brief review may be considered as an
application or elaboration of this general theoretical frame-
work, focusing on a specific SAW branch expected to be
important in reactor-scale burning plasmas, namely, the
reversed shear Alfvén eigenmode (RSAE) [6, 7].

In confined fusion plasmas, the profile nonuniformity
and magnetic geometry render the SAW spectrum continu-
ously varying radially as a continuum wa(r) [8]. A SAW
fluctuation may be continuum damped as it resonantly inter-
acts with the SAW continuum [9] by mode conversion to
short scale kinetic Alfvén wave (KAW) [10, 11] whose
perpendicular wavelength is of the ion Larmor radius p;
scale, and is eventually Landau damped by mainly electrons
[10, 11]. Thus, the SAW excitation is usually suppressed
unless the EP drive is strong enough to overcome the thresh-
old associated with the continuum damping, or the contin-
uum damping can be minimized due to, e.g., the existence of
frequency gaps in the SAW continuum. The corresponding
modes are, respectively, the EP continuum mode (EPM) [12]
and various branches of Alfvén eigenmode (AE), such as the
toroidal AE (TAE) [13] inside toroidal periodicity induced
frequency gap [14], and the SB-induced AE (BAE) [15, 16]
associated with finite plasma compressibility with 8 the ther-
mal to magnetic pressure ratio. Figure 1(a) gives a schematic
illustration of a typical SAW continuum in normal (positive)
sheared plasma, as well as rough locations of the TAE and
BAE gaps. Here, s =(r/q)0,q denotes the magnetic shear
with ¢ the safety factor. In addition to these ideal MHD
SAW eigenmodes, when the kinetic effects, including ion
finite Larmor radius (FLR) effect, finite electron inertia
and/or resistivity are considered, a multitude of their KAW
counterpart also exist with narrow radial structures and
discretized frequency spectrum inside the continuum
[2, 17-20], such as kinetic TAE [17, 18] and kinetic BAE [21].

Besides the gap modes, another possibility for the AE to
elude significant continuum damping is where the gradient
0,w, vanishes, usually nearby the flux surface where the ¢
profile reaches a local extremum (generally minimum,
labelled as gp,), figure see 1(b) for a comparison. Since the
existence of ¢ extrema implies that a radial region is charac-
terized by reversed (negative) shear, the corresponding AE
has been dubbed RSAE [22, 23]. Note that in addition to
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Figure 1. Illustrative viewgraphs of the ¢ profile (red, right axis)

and the corresponding SAW continuum w, (black, left axis) in

positive shear (a) and reversed shear (b) tokamak plasmas, the loca-
tion of ¢, is indicated in (b) as a dashed vertical line.

minimizing the continuum damping, various other effects
contribute to form an effective potential well within which a
localized eigenmode exists as a bound state nearby @i,
including toroidicity [24], the curvature of g profile (i.e., #*gq
at gmin) [7], finite Larmor radius effect of EP [25], plasma
pressure gradient [26], and kinetic effects [27]. Interested
readers may refer to [28] for a detailed simulation illustra-
tion on the RSAE existence criteria. Combining all these
factors, experimentally, the RSAEs are most easily excited
by large-orbit energetic ions during the current ramp-up
stage, where the nonmonotonic ¢ profile is (sometimes
temporarily) created by insufficient current penetration [29].
For certain poloidal/toroidal mode numbers m/n, a RSAE
often exhibits a signature frequency up-sweeping behavior
from BAE (kjquminRo = ngmin —m =0, R, is the major radius)
to TAE (kygmnRo =~ —1/2) frequency ranges, when @
decreases from a rational value, while down-sweeping
RSAEs below [30, 31] or above [32] the TAE frequency
with different ranges of k; have also been reported. The
linear physics of RSAE and its implication to experimental
diagnostics have been reviewed in section 2 of [33], and will
not be elaborated here. Instead, we mostly focus on the
nonlinear dynamics of the RSAE.

Our interest in the RSAE originates from the expectation
that burning plasma operations in future tokamak devices,
such as ITER [34], CFETR [35], SPARC [36], will likely
involve reversed shear. In fact, an economical reactor should
operate as much as possible at a self-organized steady state
with sustained fusion burning. Thus, besides the fundamen-
tal requirement that alpha particles are well confined and
their energy can be efficiently channelled to the fuel ions [37],
the plasma current should be maintained noninductively,
where the self-generated bootstrap current is generally
considered as the main component [38]. Note that the radial
profile of the bootstrap current peaks off-axis since it is
related with the plasma pressure gradient [39], and, thus, a
fully noninductive scenario is commonly characterized by
reversed magnetic shear. Indeed, the first experimental iden-
tifications of RSAE result from the advanced operation
experiments in JT-60U [22] and JET [6]. Furthermore, the
radial location of ¢,, and consequently, of RSAE, is typi-
cally deep in the plasma core region, whereas TAE gener-
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ally locates more externally with finite shear [40]. Thus,
considering that the alpha particles are mostly generated in
the plasma center, where the density and temperature
profiles peak, the RSAE is expected to play a crucial role in
nonlinear core SAW-EP dynamics of steady-state burning
plasmas. In this review, after briefly analyzing the RSAE
linear spectrum in typical burning plasma parameter regime
using a simplified simulation model [40], we discuss several
important issues in the nonlinear dynamics of RSAE.
Namely, (i) the phase space structure of resonances between
EP and RSAE, and the characteristics of EP self-consistent
transport by RSAE [41, 42]. (ii) The coupling of multiple
RSAESs and the nonlinear generation a generic low frequency
Alfvénic mode (LFAM) [43]. The LFAM is a generalized
terminology describing a rich spectrum of modes [16, 44]
with predominant Alfvénic polarization [45] and w < Wy, W.p,
typically much lower than w,. Here, w;=vi/(gR,) and
Wi = (cTi/eiBf))(kao)onnPi are the thermal ion transit
and diamagnetic drift frequencies, respectively, with
v; = V2T;/m; the ion thermal speed. Notable examples of
LFAM include BAE, kinetic ballooning mode (KBM) [46],
and Alfvénic ion temperature gradient (AITG) mode [47, 48]
(see [49, 50] for recent theoretical analyses in reversed shear
scenario). Since the LFAM could heat thermal ions via colli-
sionless ion Landau damping, this novel spectral cascading
mechanism may provide core-localized alpha channeling
from EP to fuel ions, and thus, directly contribute to the
enhancement of fusion performance. (iii) The spontaneous
excitation of the axisymmetric zero frequency zonal field
structures (ZFZSs) [51] by a finite amplitude RSAE via
modulational instability [52]. This mechanism may have
potential interest in not only the spectral energy transfer and
the eventual saturation of the RSAE, but also in the core heat
and particle transport, noting the important role of the ZS in
regulating microscopic turbulences [53]. Of course, the
above-listed topics within this brief review have no inten-
tion to be exhaustive, but rather to attract further research
attentions on the unique role of the RSAE within the multi-
scale dynamics of burning plasmas [2, 54].

The nonlinear physics through RSAE-EP resonant
dynamics and the nonlinear wave-wave coupling will be
elaborated in sections 2 and 3, respectively. Noting that
SAW naturally exhibits two-scale mode structures along the
extended poloidal angle [55] due to continuum coupling
[12, 16, 46, 56], it is readily seen that the large orbit EP
contribution mostly enters the ideal region, whilst the wave-
wave coupling dominated by perpendicular scattering takes
place in the singular inertial region [57, 58], where the ther-
mal plasma contribution due to Reynolds (RS) and Maxwell
(MX) stresses maximizes. This characterization also allows
us to use different descriptions when focusing on different
nonlinear physics. In section 2, we refer to a hybrid MHD-
kinetic model [59], where the EP are treated kinetically and
self-consistently coupled to the MHD equations which
describe the RSAE fluctuations on mesoscopic spatiotempo-
ral scales [2, 40, 54]. That is, the timescale under considera-
tion is of the order of the inversed linear growth rate 1/

and the typical perpendicular wavelength of the mode enve-
lope is comparable with the resonant EP orbits. More partic-
ularly, we rely on numerical simulations by the hybrid MHD-
gyrokinetic code (HMGC) [60] using simplified but repre-
sentative parameters. On the other hand, in section 3, the
nonlinear gyrokinetic theory [61] is applied to properly
capture the kinetic responses mandatory for perpendicular
scattering [57], the wave-particle interaction important for
collisionless fuel ion heating by the nonlinearly generated
LFAM [43], as well as the trapped particle effects for
neoclassical inertia enhancement crucial for ZFZS physics [51,
52, 62]. In section 3, in order to make analytical progress,
the wave-EP resonance important for RSAE excitation is
neglected; instead, we treat the RSAE as a prescribed finite
amplitude pump wave, and focus on its nonlinear mode
coupling processes [63]. Ultimately, a fully self-consistent
description of the nonlinear wave-EP dynamics and quantita-
tive assessment of the RSAE nonlinear saturation and EP
transport must account for both nonlinear wave-wave
coupling [43, 52, 64] and wave-particle interaction [40, 41]
on the same footing, along with the multiple spatial and
temporal scales that naturally appear [2, 54]. This is,
however, very challenging via either analytical derivation or
large scale numerical simulations, and beyond the scope of
this brief review. Section 4 summarizes our present under-
standings and gives an outlook to possible future research
topics.

2. RSAE-EP resonant dynamics

This section mostly focuses on the saturation process of the
EP-driven modes due to wave-particle nonlinearity, that is,
the modification of resonant particle trajectory by finite
amplitude electromagnetic oscillations, which may lead to
particle transport as well as self-consistent nonlinear evolu-
tion of the (typically single-n) wave, very often with the
character of non-adiabatic frequency chirping [65-72]. As
the resonant interaction between SAW and EP generally
exhibits macro- or meso-scopic scales and depends sensi-
tively on the detailed structures in the EP phase space,
numerical simulations are generally needed. In addition,
since we attempt to extract the generic characteristics of the
RSAE saturation due to wave-particle nonlinearity, as well
as the resultant EP transport, the simulations need to be
sufficiently representative. Thus, we adopt a simplified
simulation model with main parameters chosen to represent
burning plasma conditions, which can be easily extrapolated
to various devices, proposed or under construction, by means
of a few dimensionless parameters [40, 41]. On the other
hand, many machine-specific features are neglected, such as
the plasma shaping and realistic particle distribution func-
tions reflecting heating methods. Section 2.1 presents more
details on the model assumptions and main parameters. As a
necessary background to pave the way for the nonlinear
analyses later on, we give an overview on the linear proper-
ties of the RSAEs in the simulations in section 2.2. Further-
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more, the structures of RSAE-EP resonance in the phase
space are analyzed in great detail; such an understanding
could provide a direct implication on the nonlinear satura-
tion mechanism and EP transport processes discussed in
section 2.3.

2.1. Numerical model and parameters

The hybrid MHD-kinetic model [59], which is the founda-
tion of many codes [60, 73-75], is a simple yet relevant
model to study the nonlinear interactions between EP and
MHD instabilities such as the SAW. In this model, the back-
ground plasma equilibrium and fluctuations are described by
a set of MHD equations, whilst the EP are calculated kineti-
cally, and couple with the MHD momentum equation
through either the pressure or the current terms. Typically, a
simulation case is initialized at an unstable condition with
negligible perturbation amplitude, such that the most unsta-
ble mode driven by EP can be observed with a clear expo-
nentially growing linear stage, followed by the eventual satu-
ration due to nonlinear effects. Compared with a fully
gyrokinetic approach as in section 3, the thermal plasma
responses are simplified as a MHD model; however, the self-
consistent wave-EP kinetic interactions are fully retained.
That is, during both the linear growth and nonlinear evolu-
tion stages, the EP could impact or even significantly alter
the MHD mode structures and real frequency, in addition to
providing the driving mechanism of the mode spectrum; the
EPM is a clear example [2, 12, 68, 76, 77]. This interaction
is often referred to as the nonperturbative effect of the EP
[12, 68], which has been shown to be important when
comparing the measured and simulated RSAE mode struc-
tures in present-day devices [78], and is also expected to be
significant for RSAEs in burning plasmas [40, 41].

The HMGC is utilized as the main research tool in this
section. For simplicity, only the essential physics contents
are described here; interest readers are referred to specific
publications [60, 79, 80] for more details on the physics
equations and the numerical treatments. In HMGC, the
single-fluid MHD equations are in principle ideal ¥, and are
further reduced [81] by considering a large aspect ratio
geometry with shifted circular cross sections, and neglecting
the plasma compressibility. Thus, besides the effect of
plasma shaping, which is less significant in the plasma core
region, the coupling of RSAE with acoustic waves [82] is
also neglected, and at the lowest order, the RSAE frequency
follows that of the SAW continuum accumulation point
(CAP), wa = |nGumin —Mm|va/(gmnRo). The scalar potential d¢
and the parallel component of the vector potential 6A; are
the two interconnected field variables. Furthermore, the
MHD equations are linearized by evolving only a single
toroidal mode number 7 in a simulation case, while nonlin-

The derivation of model equations assumes ideal MHD condition, 6E, = 0.
However, as common in MHD codes, several small-valued numerical
dissipation terms (mainly resistivity and viscosity) are still included, in
order to dissipate the mode-converted radial singular structures [10] where
the continuous spectrum is resonantly excited, and avoid grid-level
numerical instability.

ear mode couplings are systematically neglected. In fact, the
only retained nonlinear effect is the perturbation of the EP
distribution function when the mode reaches a finite ampli-
tude. Using particle-in-cell methods, the EP orbit is solved
by a set of drift-kinetic equations [83] in HMGC. Thus, we
neglect the FLR effect and but fully retain the finite drift
orbit width (FOW) effect. The nonperturbative EP drive
enters the MHD force balance equation via the divergence of
the Chew-Goldberger-Low pressure tensor term [84].

The simulation parameters are mainly inferred from the
proposed ‘hybrid’ operation scenario of the ITER [34], with
weakly reversed magnetic shear in the core. Although it is
our ultimate target to simulate the fully noninductive steady-
state scenario of a fusion power plant, which typically has
strongly reversed shear and elevated g profile under the
present design [35, 38], there remain many open issues with
this case such as balancing the current composition with
plasma profiles and external power input. Meanwhile, the
‘hybrid’ scenario is much better understood and readily
achievable in present and future devices, e.g., the Divertor
Tokamak Test (DTT) facility currently under construction in
Frascati, Italy [40, 41, 85]. Nominally, noting the large
aspect ratio model of HMGC, we assume R, = 10 m, minor
radius a=2m, on-axis magnetic field By, =5T. As
RSAESs of interest here are typically core-localized, this large
aspect ratio assumption will not significantly impact the
results of the present analysis. Figure 2(a) shows the consid-
ered g profile, with g, = 1.028 slightly above unity at
about one third in the minor radius. Thermal ions are
assumed to be deuterium with density #; =2%x10* m™ and a
flat radial profile for simplicity, as their gradient is not
expected to be significantly impacting the RSAE spectrum in
the core region. On the other hand, by neglecting the plasma
compressibility and coupling with acoustic waves, the
plasma temperatures are not explicitly considered here;
T.=T;=20keV is assumed when evaluating the critical
energy of the slowing-down EP distribution function [86].

As EP population, we consider only the fusion born
alpha particles with birth energy E, = 3.52 MeV, and use an
isotropic slowing-down model. Figure 2(b) shows the
assumed radial density profile with ngp a/n =2Xx 107 and
Bepaxis = 0.63%. Note that similar pressure profile can be
reproduced by a proper combination of multiple heating
methods [87]. Finally, we note that all these nominal param-
nee x108 (D)
n; T

2
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Figure 2. Equilibrium ¢ profile (a) and EP density ngp profile (b).
The locations of ¢, and ¢ = 1 surfaces are indicated in (a).
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eters are assumed only to build a reasonable reference for
these simulations, which could represent a generic burning
plasma scenario [40]. In fact, besides the obvious factors like
magnetic geometry and global profile nonuniformity, the
SAW-EP dynamics can be reflected by a few dimensionless
parameters. Among them, we emphasize the characteristic
speed r1atio  Vep/Vauxis = VEu/Mep/Vaus = 1.684,  which
dictates the resonance condition; and the normalized EP
Larmor orbit width pgp/a = vep/(Weppaxis@) = 0.0192, which
is considerably smaller than present day devices, and
connects with the most unstable mode due to the important
role of orbit averaging in determining the drive intensity (see
section 2.2).

2.2. Linear properties and the resonance condition

We begin this section by inspecting the RSAE linear spectra
in multiple simulation cases with different n. Figure 3
overviews the modes’ radial structures and spectra as func-
tions of n in the range of n =317, and as a reference case
with n =10, figure 4 gives an example of the RSAE mode
structures. For lower n=1 and 2, the modes behave like
fishbones [88] and are not of our interest here. At higher
n> 16 with the RSAE frequency approaching the TAE gap
for the present equilibrium with ¢, =~ 1.028, the TAEs
localized nearby the g¢., surface are also unstable, and

. (@) B
WA axis WA axis
04f —=n=17]
E 0.01f
0.3} —
==
0.2} _E._ 0.005}
01 3 n =
O | A 0 L
0 0.5 0 10
r/a n

Figure 3. (a) The frequencies and radial locations for the RSAEs in
the simulations, where each segment indicates the radial range with
amplitude larger than 10% of the peak amplitude. (b) The linear
growth rate y; versus n.

5¢€Ep X 1 0-8

(b)

merge with the RSAE branch at n = 18 with kyguninRo = 1/2.
Note that in the present simulations, by considering G
marginally above an integer, the RSAE frequency lies close
to the minimum point of the continuum [24], and has a
nearly linear dependence with n, as can be seen from figure 3
(a), where the modes with adjacent n are almost equidistant
in frequency space. These RSAEs, although generally rare in
present day devices, could still be excited if such an equilib-
rium can be maintained to avoid strong sawtooth events, and
are shown to have quite similar properties to the more
common RSAEs above the local continuum maximum point
with g, slightly below a rational value [30, 31, 89, 90].
Meanwhile, the linear growth rate y;. versus #z in figure 3(b),
shows that ;. first gradually increases with n, then becomes
nearly invariable at around n = 10, before a second increase
appears at higher n. The underlying reason for the variation
of y., i.e., the linearly most unstable mode, is associated
with different driving source in the EP phase space as well as
the orbit averaging effect for the drive intensity [40]. By
inspecting the phase space power transfer diagram in the EP
phase space [91], it is found that at lower n (n < 10), the
RSAEs near the BAE frequency range are almost purely
driven by the magnetically trapped EP via the precession
resonance [76]. With increasing n and thus w, the transit
resonance with mostly barely counter-circulating EP also
becomes appreciable and gradually dominant. The location
of significant resonant drive in the velocity space is shown in
figure 5(a) for n =10 in the transition between the two
regimes. On the other hand, the variation of y; within each
regime can be understood from the maximized EP drive
intensity condition as k, pgep ~ O(1) [12, 18, 93], with pggp
the drift orbit width of EP in the present model. In more
details, noting that the EP drive intensity scales with its
diamagnetic frequency w.gp occm [94, 95], higher-n modes
would receive stronger drive without considering other
effects. Meanwhile, the perpendicular wavenumber k, domi-
nated by k, o« m also increases with n, and when the wave-
length 1/k, becomes comparable with the EP orbit width,
orbit averaging effect kicks in and limits the most unstable
mode number with &k, psep ~ O(1). Indeed, as can be esti-
mated from the poloidal mode structure and resonant EP’s

Z w
E ) a ) ) ) ¢ axis )
“of ] osf elaw) 1 Thop :
4t e 0.3}
of Of E P 3 -
0.2}
o e '.’. 0.1
ot -0.51 . . 1 . .
0 4.5 5 55 0 0.5
R/a r/a

Figure 4. For the n =10 RSAE in the linear stage, (a) fourier decomposed radial structure of d¢; (b) in the poloidal plane, where the
magnetic axis and the ¢,;, flux surface are indicated; (c) frequency spectrum 0¢*(r,w) by fast Fourier transform in time and integration in
poloidal angle, the solid curve is the theoretically calculated SAW continuum.
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Figure 5. For the n = 10 RSAE in the linear stage, (a) volume averaged wave-EP power transfer intensity in the (u,v) space, positive data
(red-yellow) denotes drive. The blue curve roughly indicates the boundary of the EP distribution function (contour line of 5% of the peak
value), the black dashed parabola is the theoretically estimated trapped-circulating boundary [92] at g,,;,. Radial resonance structures from
trapped (b) and circulating (c) test particle samples, including the resonance frequency w,.(7) (red curve) with 7 the orbit averaged radius
of the particle, the radial mode structure 6¢*(r) (green dots), and the power transfer profile by the test particle sample (blue, dash-dotted
curve). The horizontal lines indicate the range of mode frequency for effective resonant interaction (w and w + 3y).

drift orbit [40], at n =~ 10, k,p, ~ 1.2 for the banana orbit of
trapped EP, corresponding to the first peak in figure 3(b)
around n ~ 10. Meanwhile, k,p, =~ 0.3 at n = 10 for the tran-
sit orbit of circulating EP, noting that p, ~ €'’ p, with
€ = r/R the inverse aspect ratio, and thus, the most unstable
mode number dominated by circulating EP resonance is
expected to be around n ~20-30. In any case, one could
reasonably conclude that the most unstable mode number for
RSAE in the present burning plasma scenario is n ~ O(10),
implying that the SAW-EP dynamics indeed takes place on
the mesoscale. Similar linear studies generally give the most
unstable mode numbers in the range of n ~ 20 —30 for core-
localized TAEs with weak shear driven by circulating alpha
particles in ITER-like burning plasmas [96—100], consistent
with the trend in figure 3(b) and the argument given here.
We then investigate the structure of the RSAE-EP reso-
nance in the phase space by following the orbits of a charac-
teristic set of resonant particle sample as test particles. In
accordance with the nonlinear investigations in the next
section 2.3, these test particles are chosen to have the same
constants of motion in the presence of perturbations; namely,
the magnetic moment u and the extended Hamiltonian
E'=E-wP,/n [101]. Here, P, is the canonical toroidal
angular momentum, which is a constant of motion without
perturbations, and its value roughly represents the opposite
of the poloidal magnetic flux, representing the radial flux
coordinate. Due to the conservation property of u and E’, at
the lowest order, such a phase space sample is preserved
through the nonlinear phase, and thus, is suited for an
isolated examination of the resonant EP dynamics [91, 102].
As suggested by figure 5(a), we choose samples from both
trapped and circulating regions, with uB,/E, =0.4,
E'/E, =0.396 for the trapped sample, and uB,s/E, = 0.3,
E’/E, =0.354 for the counter-circulating one; and both sets
of test particles are distributed around the radial range of the
mode location. The resonance structures in the radial space
are shown in figures 5(b) and (c), where the orbit averaged
radial coordinate 7 of the test particle is used for a better

comparison with the radial mode structure. Note that the
relevant resonance frequency w,., depends on the particle’s
orbit type and resonance mechanism. For the magnetically
trapped particles (figure 5(b)), the dominant resonance is the
bounce-averaged toroidal precession drift,

()

while for circulating particles (figure 5(c)), the transit reso-
nance takes the form [68]

Wres = Ny ,

@)

with the drift frequency wy typically much smaller than the
transit frequency w, = v;/gR for well circulating particles, g
is the orbit averaged value of ¢, and p is an integer corre-
sponding to the considered harmonic in the drift orbit expan-
sion. In figure 5(b), one sees that for the deeply trapped EP,
wq essentially scales as 1/r radially [76]. Thus, apart from
the region very close to the magnetic axis, ws is not signifi-
cantly varying radially, and is close to the mode frequency in
a quite broad radial domain, as can be also confirmed by the
radial profile of power transfer by the test particle sample,
whose radial width is comparable with the one of the mode.
In fact, figure 5(b) shows some finite mode drive in the
radial layer 7/a ~0.38—-0.43 outside of the radial mode
location d¢*(r), due to the fact that these resonant EP’s fat
banana orbit only partly overlaps with the RSAE. As a
result, the effective range of 7 (the bounce averaged particle
guiding center position) for wave-particle power exchange
can be broadened with respect to the mode structure by a
length of the order of the resonant particle radial orbit width
(see Appendix A of [68] for further details). All together,
this evidence indicates that the radial range where resonant
wave-EP interaction could take place is clearly limited by
the finite radial range of the localized RSAE mode structure,
rather than the resonance condition w,.s ~ w. In figure 5(c),
we also find a quite similar resonance structure near the
RSAE radial location for the circulating EP. If one neglects

Wres =”w_d+(m_1_m+17)wu
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the first term on the right hand side (RHS) of equation (2), it
can be easily found that d,w, is mostly determined by 9,4,
i.e., the magnetic shear, which always vanishes around the
radial location of RSAE. Thus, a relatively flat w,(r)
profile, and correspondingly, a radially resonant region
comparable with the mode width, is also expected for the
circulating EP [42]. In contrast, as shown in [41], the reso-
nance structure of circulating EP would be significantly
different for the outer-core TAEs with finite magnetic shear.
The much greater d,w, induces radially very narrow reso-
nant region and sharp peaks in the power transfer profile,
and potentially leads to different saturation mechanism [41,
68]. Compared with the TAE, the radially broad resonance
structure of the RSAE is due to its high mode number and
lower frequency, such that the precession resonance with
trapped EP is possible, and also due to the weak/vanishing
magnetic shear near the mode location when resonating with
circulating EP. Nonlinearly, such resonance structures
suggest that the resonant EP’s response to the mode would
be nonlocal, due to the fact that the resonant EP could
explore the whole radially nonuniform mode structure during
radial transport, as allowed by the resonance condition [41, 68,
91,102, 103].

2.3. Nonlinear saturation and EP transport

In this section, we only focus on the saturation process due
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to the self-consistent wave-EP nonlinear dynamics. That is,
with increasing RSAE amplitude and resonant EP orbit
excursion, the EP drive intensity associated with phase space
gradient is gradually weakened, and the saturation is reached
when the drive eventually drops to the level of the back-
ground damping which is induced by the resistive-like terms
in the present MHD model, as shown in figure 6(a) for the
time evolution of the peak value of 6¢. This nonlinear
process takes place on very short timescales, O(1/y.) [68].
On the other hand, the nonlinear saturation to be analyzed in
section 3 generally assumes such a finite amplitude RSAE as
the initial condition, and focuses on its nonlinear coupling
with other waves on typically much longer timescales. The
eventual saturation amplitude obtained therein may provide a
more comprehensive indication of the RSAE’s impact to
fusion performance.

As anticipated above, the analyses on the radial structure
of RSAE-EP resonance bear significant implications to the
mechanisms of RSAE’s nonlinear saturation and EP trans-
port [41, 91, 102, 103]. To see this more in detail, we again
utilize the isolated resonant test particle sample shown in
figures 5(b) and (c). An efficient way to visualize the trans-
port process is to map the particles’ canonical coordinates
into a series of Poincaré frames [104] and observe the
change of phase space topology. Figures 6(b)—(d) show
several time frames in the (0, P,) plane for the trapped EP
sample in figure 5(b), where © = —wt+n¢p is the relative

(d)

trapped((]gPs (b)-(d)

27 0 T 27
C]

27 0 T

Figure 6. (a) Time evolution of the peak value of 6¢. Red dashed vertical lines indicate the time of the phase space snapshots of following
figures. (b)—(d) Poincar¢ plots in the (®, P,) plane of the trapped test particle sample at three different times. Here, P, is normalized by
MEpaAVa uis- The particle markers are colored by its initial value of P,, the location of P, ., where ® =0 in the linear stage is indicated by a
horizontal dashed line. The radial mode structure 5¢*(r) is plotted in (b) by mapping r + 7 and then to P, coordinate in the linear stage.
(e) Time evolution of the mode frequency at the peak value of the integrated frequency spectrum 6¢(r,w,t). (f)—(h) Same as (b)—(d) for

the circulating test particle sample.
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wave-particle phase evaluated at 6 = 0; and figures 6(f)—(g)
for the circulating particle sample. Here, in order to give an
indication of the corresponding radial range, the linear radial
mode structures 6¢*(r) are mapped into P, coordinate via
the 7 of the test particles in the linear stage. Taking the
trapped EP as an example, in the linear stage with negligible
RSAE amplitude (figure 6(b)), P, remains conserved, and
the particle markers are streaming along the horizontal axis
with shifting phase. The direction and speed of this stream-
ing are determined by the minute difference of w,., and w
shown in figure 5(b), and one has ®=0 where
Wres(Pyres) = w, as indicated by a horizontal dashed line in
figure 6(b). Utilizing this property, in figure 6, all particle
markers are colored (from blue to red) by its initial value of
P, throughout the nonlinear evolution, such that the nonlin-
ear variation of P,, ie., phase space transport, would
become evident. Indeed, when the RSAE amplitude grows to
finite (figure 6(c)), the conservation property of P, breaks
down, one sees that the colored markers start to cross the
P, line. Note that, during this stage, since figure 5(b)
shows that the resonance condition remains nearly satisfied
in the radial domain of the mode location, ® keeps quasi-
stationary and the transported EP retain a coherent bundle.
With © =~ 0, the resonance condition is substantially main-
tained, and the transported EP keep driving the mode, as can
be seen from figure 6(a) that the growth rate remains nearly
unweakened in this stage. This phenomenon, dubbed ‘phase
locking’, was first shown when simulating the trapped EP
transport induced by n =1 fishbones [105], and indicates
that the EP transport here has a convective nature [77, 106].
The main difference with respect to the global fishbone is
the radially localized mode structures for the n~ O(10)
RSAEs. Indeed, the transport weakens when the resonant EP
reach the radial boundary of the mode location, i.e., radially
decouple with the mode, phase slips by roughly =, and these
EP stream back in phase. At the timing of mode saturation,
figure 6(d) shows the formation of a phase space resonance
island, whose radial range is clearly comparable with, and in
fact, limited by the finite scale of the radially localized
RSAE mode structure. Thus, the predominant saturation
mechanism for the RSAE here is the ‘radial decoupling’,
rather than the ‘resonance detuning’ [2, 68]. Note that the
‘resonance detuning’ mechanism is expected to play impor-
tant roles at marginal stability [107]. Nevertheless, as shown
in the EP density scan in [41], the ‘radial decoupling’ mech-
anism, and the accompanied convective EP transport, are
significant for RSAEs even with sufficiently weak drive,
whilst the outer-core TAEs are dominated by ‘resonance
detuning’ at similar growth rates. As mentioned above, all
these features can be traced back to the peculiar phase space
resonance structure for the RSAE in figure 5(b), and also
apply to the circulating EP with the similar radial resonance
structures (figure 5(c)), as shown in figures 6(f)—(h) for
completeness.

The simulation finding follows from the unified theoreti-
cal paradigm of EP transport in burning plasmas [2, 68, 69,
108], and, when applied to a single-n RSAE predominantly

driven by an isolated resonance, it suggests that a core-local-
ized RSAE would generally induce coherent and convective
EP phase space flows in the radial range of the mode loca-
tion. The EP transport includes both radially inward and
outward particle flows; however, the net effect is an outward
particle flux due to the nonuniform EP distribution function.
This agrees remarkably well with the recent observations in
DIII-D, in which quite a large scale EP phase space flux is
possibly induced by the global mode structures of low-n
RSAESs [109]. Based on the simplified simulations here and
envisioning the much more complex burning plasmas, two
possible consequences are predicted theoretically, depend-
ing on the EP-drive intensity and the number of modes
involved. If the EP are strongly driving the RSAE and show
significant nonperturbative effect, i.e., the RSAE has clear
EPM features to maximize the resonant EP drive, the mode
structure and frequency would also undergo significant
modification following the self-consistent evolution with the
EP transport [41, 42]. A typical signature is the fast, nonadi-
abatic frequency chirping of the RSAE [41, 42, 77], in addi-
tion to its usual frequency sweeping behavior due to equilib-
rium evolution in much longer timescales [110-112]. In fact,
the nonadiabatic frequency chirping is already evident in the
present simulations, as can be seen in figure 6(¢) that the
peak frequency of the wave packet is oscillating with the
same frequency of the mode amplitude pulsation, which is of
the order of the typical resonant EP ‘bounce’ frequency wg
inside the phase space resonance island of figures 6(d) and
(h) [2, 68]. The details of the nonadiabatic frequency chirp-
ing of EP-driven SAW is beyond the scope of the present
review, and readers are referred to more specific publica-
tions on the recent advancement in understanding the under-
lying physics in various physics contexts [42, 113, 114].
Here, we only note that one possible wave branch may
undergo convective amplification by continuing to maintain
the resonance condition with the EP and following the
convective EP flux; the radially propagating wave packet
would bring forward more resonant particles by shifting the
resonant region in phase space [7, 68, 72, 77]. This is
severely dangerous for EP confinement since it may break
good Kolmogorov-Arnold-Moser (KAM) surfaces and lead
to avalanche-like global EP transport [98, 115, 116]. Another
scenario is when the system contains a large number of low
amplitude modes [3], which may be more likely in steady-
state burning plasmas since a broad spectrum of RSAEs may
be simultaneously unstable, as suggested by the linear analy-
sis in section 2.2. The phase space resonance islands of EP
with different modes could easily overlap and decorrelate the
coherent phase space structures. In this case, the EP trans-
port may also exhibit a random-walk-like diffusive charac-
ter [117, 118]. The role of convective versus diffusive EP
transport induced by RSAEs in the core of burning plasmas,
of course, depends on the considered scenario, and both
mechanisms might even coexist when inspecting different
scales. This is a subject of on-going researches and will be
reported in future publications. Nevertheless, we note that
either of these transport mechanisms could lead to nonlocal
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EP transport and probably connects with the outer-core
modes such as the TAE. In this regard, a key parameter in
burning plasma operation may be played by the radial loca-
tion of the g, surfaces, which relates with the closeness of
phase space resonances between core-localized RSAEs and
outer-core TAEs. Previous numerical works on the ITER
hybrid scenario suggest that an EP transport barrier between
core-localized and outer-core TAEs may exist with minimal
local diffusion [100]; however, a domino-like effect leading
to successive global EP transport is also possible [98]. Over-
all, a thorough characterization of the RSAEs’ impact to EP
confinement is nontrivial and requires both large scale global
simulations and advanced transport models. Here, it is
worthwhile to note that a systematic theoretical formalism
for analyzing wave-particle interactions and the ensuing self-
consistent EP transport has been developed based on the
description of renormalized nonlinear neighbouring equilib-
ria varying on the mesoscales and the long-lived phase space
zonal structure (PSZS) evolution [2, 68, 69, 108, 119]. This
understanding provides us a possible framework to calculate
the long timescale SAW-EP nonlinear interplay in realistic
geometry with affordable computational demands, and is
actively pursued envisioning the burning plasma operation in
the near future.

3. Nonlinear wave-wave couplings

In the previous section 2, it has been shown that a broad
spectrum of RSAEs could be readily excited by EP in the
core of a burning plasma, and may reach appreciable ampli-
tudes. Naturally, their further nonlinear evolutions become
the next question. As shown in [58] by simply manipulating
the ideal MHD momentum equation in a uniform plasma, a
large amplitude SAW could exist due to the exact cancella-
tion of the nonlinear terms, namely, the Reynolds and
Maxwell stresses. Meanwhile, various nonideal effects,
notably the magnetic geometry, plasma nonuniformity,
compressibility and kinetic effects, could break such a ‘pure
Alfvénic state’ [1] and lead to nonlinear spectral energy
transfer by coupling with other collective oscillations [2, 58,
63]. These nonideal effects, which must be accounted for
when studying SAW instability nonlinear dynamics and EP
transport in burning plasmas, have been intensively investi-
gated using TAE as a paradigm case [51, 120-127], as
recently reviewed in [128]. The developed theoretical frame-
work and obtained insights can be straightforwardly applied
to other kinds of SAW instabilities, e.g., RSAE, which is the
subject of this section, based on the understanding of RSAE
linear physics and saturation due to wave-particle interac-
tions as reviewed in section 2.

Note that when the kinetic responses of thermal plasmas
in the short wavelength regime that dominate the inertial
layer contribution to RS&MX are considered, the core
plasma fluid description as in section 2 is generally insuffi-
cient, and the nonlinear gyrokinetic theory [61] must be
adopted to properly account for key physics such as the

trapped particle contribution to neoclassical inertial enhance-
ment crucial for zero frequency zonal flow [58, 62]. A
demonstration for the necessity of the nonlinear gyrokinetic
approach is the paradigm case of the nonlinear parametric
decay of a pump KAW into an ion sound wave and a KAW
sideband [11, 57], where it is shown that not only the nonlin-
ear drive is quantitatively enhanced compared to the MHD
regime [63], but also the scattering cross section is qualita-
tively changed, with significant implication to plasma trans-
port. The theoretical framework and the governing equa-
tions are elaborated in section 3.1, based on which, in the
following sections, we derive the dispersion relations of two
important nonlinear wave-wave coupling channels for the
RSAE nonlinear evolution [43, 52], identify the parameter
regimes for them to occur, and estimate the threshold condi-
tions of their onset. To make analytical progress, we also
treat this coupled system as a long timescale saturation prob-
lem by looking for fixed point solutions [129], which may
shed light on the RSAEs’ impact to fusion performance.

In principle, there could be many possible channels for
wave-wave coupling as either spontaneous decay or forced
driven processes, due to the rich electromagnetic oscilla-
tions in plasmas with dominant collective behaviors as a
result of the long-range eclectromagnetic forces. Thus, the
examples shown in this section are necessarily simplified
and selected based on their potential important role in the
RSAE nonlinear dynamics and fusion performance. As many
RSAEs as well as their kinetic counter-part [18], the
KRSAEs, exist with radially overlapped mode structures and
generally separated frequencies (see figure 3(a)), they may
naturally couple and possibly excite a LFAM as suggested
by their small frequency differences. In section 3.2, we
present a general paradigm of three SAWs coupling in the
nonlinear gyrokinetic regime, and apply to the scenario of a
pump RSAE decaying into another RSAE and a LFAM.
Besides determining the RSAE nonlinear saturation spec-
trum and EP transport, this process may have potential roles
on the collisionless heating of fuel ions by the LFAM
Landau damping. On the other hand, a finite amplitude SAW
with a coherent radial envelope could become modulation-
ally unstable, and spontancously excite the toroidally
symmetric ZFZS [51]. The dispersion relation of the modu-
lational instability and the impact to RSAE saturation are
discussed in section 3.3.

3.1. Theoretical model

For simplicity and clarity, similar to section 2, we also take a
large aspect ratio tokamak equilibrium with shifted circular
magnetic surfaces. The electromagnetic fields are described
by 6¢ and 6A,. Here, 6B, is consistently neglected as plasma
B <1, but finite 0E; and kinetic compressibility are fully
retained. For convenience, we take oy = wdA,/(ck) as alter-
native variable for the induced field, such that 6E, = 0 corre-
sponds to d¢ = 6.

The governing equations describing nonlinear interac-
tions of three waves coupling include the nonlinear gyroki-
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netic vorticity equation derived from the parallel Ampere’s
law, quasi-neutrality condition and nonlinear gyrokinetic
equation [2, 130, 131]. The first two equations read

¢ pokK I, 2(( ~J2)F,)5 —Z - JwsoH
Ane? B ooVt o) KWa0Hk
— _L AI]: " [ k//Z 6161//[( 6[61701(
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+(e (Uil = Je)SLL6Hy )] 3)
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Noting that &, pqgp ~ O(1) for the pump RSAE, and thus,
k,pi < 1, the quasi-neutrality condition (4) can be some-
times simplified as the nonlinear ideal Ohm’s law,

SEj == ) b-ou, x6By/c,

k=k'+k"”

)

with ou being the E X B drift velocity. Here, the three terms
on the left hand side (LHS) of the vorticity equation (3)
denote the field line bending, inertia, and the curvature
coupling, respectively. The two terms on the RHS are
formally nonlinear and correspond to MX and RS, respec-
tively [131]. 0, is the derivative along the direction of the
equilibrium magnetic field b = By/By; J; = Jo(k.p) is zeroth
order Bessel function accounting for the FLR effect;
wg = (v +2v))(2QRy) (k, sin 6 + ky cos 6) is the magnetic drift
frequency; (...) denotes velocity space integration;
A’,ﬁ,,,k, =(c/By)b- k" x k' accounts for the perpendicular scat-
tering; and 0Ly = 6y — kyv oY/ wy.

Here, as noted above, we assume the nonlinear evolution
of the pump RSAE with a prescribed amplitude, while
neglecting its linear excitation by EP, due to their typically
negligible contribution to RS&MX in the fast varying iner-
tial layer where k pgp > 1 [16, 46]. Instead, the nonlinear
mode coupling is dominated by thermal plasmas [51, 57],
which are consistently described by the nonlinear gyroki-
netic approach. The nonadiabatic particle responses 0H; for
electron/ion species (subscript ‘s’, which is suppressed when
possible), contained in the perturbed distribution function,

(Sﬁ( ( ) F06¢k+e" 5H/\,

are solved from the nonlinear gyrokinetic equation [61]
(—iwk+vH(31+iwd)5Hk _—ICL)/\( ) F()Jk(st

~ > Ak JuSLeSH . (6)

k=k'+k"

The equilibrium distribution function F, is assumed to be
Maxwellian, and again, in equation (6), effects associated
with plasma profile nonuniformity are neglected, since

10

diamagnetic frequencies of the core plasma are small
compared with the RSAE frequency in the wavelength
regime of interest here.

3.2. Parametric decay of RSAE and LFAM excitation

The first nonlinear mode coupling of RSAE presented, is the
direct coupling among multiple unstable/stable RSAEs
and/or their kinetic counterpart, KRSAEs, and the nonlinear
excitation of secondary SAW modes. This is possible since
there are many RSAEs simultaneously excited with radially
overlapped structures in the reversed-g region, forming a
rich and broad spectrum. As the RSAEs/KRSAEs satisfy,
w* = k2 % to the lowest order, when they couple, the gener-
ated modes will naturally satisfy the SAW dispersion rela-
tion. Among them, the lower frequency Alfvénic mode
induced by two counter-propagating RSAEs/KRSAEs may
resonantly interact with thermal ions, leading to collision-
less fuel ion heating, and is of particular interest for future
reactors.

As all three modes involved are SAWSs, we first consider
a generic scenario of three modes coupling with predomi-
nant SAW polarization, and then apply to the specific case of
LFAM spontaneously excited by a pump RSAE. For
simplicity of the derivation, we consider the ‘local’ limit and
neglect the effect of plasma nonuniformity, corresponding to
the limit that w,,; is much smaller than the LFAM frequency.
Thus, the present formalism applies to BAE as LFAM
branch straightforwardly, but should be properly extended to
account for the diamagnetic effect [132] when considering
KBM or AITG.

To begin with, we note the ordering |kyv.|> w>
|kyvil,wq, and one has the linear particle responses
6H) = eFyJ;6¢," |T; and 6H') = —eFyJ;6y\” /T, at the lead-
ing order. Substituting into the quasi-neutrality equation (4),
it shows that the ideal MHD condition 6¢\” ~ 6" is main-
tained at the leading order, while it breaks down at the next
order due to ion compressibility [57]. Meanwhile, from the
vorticity equation (3) one derives the SAW dispersion rela-
tion

Tb Ex09) = (7)

Here, b, = Lp] /2,

&= 1-kivi Jw; — wi/wy, (8)
is the SAW dielectric function in the local WKB limit, with
=T, /T, and wg= V7/4+7(vi/R,) the leading order
geodesic acoustic mode (GAM) frequency [133-136] that
accounts for the SAW continuum upshift and the creation of
the beta-induced SAW continuum gap [16]. Note that &
here does not contain the effect of wave-particle resonances,
consistent with the frequency ordering above. However, the
anti-Hermitian part will be formally reinstalled [16] when
considering the thermal plasma heating via the LFAM ion
Landau damping below.
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Considering € (wy,k) generated by the coupling of
Q. (wp, k') and ;. (wy-, k"), and noting the leading order
particle responses, one has
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from equation (3), and
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from equation (5). Combining equations (9) and (10), one
obtains
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describing the evolution of €; due to the nonlinear beating
ku

of Q, and Q. , with
b ki K/
A Wy w_p e

the nonlinear coupling coefficient. The first term on the RHS
of equation (12) is due to the competition of MX and RS,
and the second one is the finite E| term arising from the field
line bending term.

Despite its simple form, equation (11) describes rich
phenomenology. Two types of scenarios can be distin-
guished, namely, a spontancous decay process where an
unstable SAW decays to other two stable SAWs; and a
forced driven process as two finite amplitude SAWs beat to
a third one. For example, considering the high frequency
range with w > wg and all three SAWs are normal modes
satisfying w =~ kjva, the frequency matching conditions can
be naturally satisfied. E.g., equation (11) can be applied for
the coupling among TAE, ellipticity induced AE and noncir-
cular triangularity induced AE [127]. If the parallel electric
field due to kinetic effect is properly considered [57], equa-
tion (11) can also be generalized to describe the resonant
decay and spectral cascading of KAWs in, e.g., the solar
wind. In this case, the wg term, which is unique in toroidal
plasmas, can be dropped, and k; can be taken more flexibly
without the periodicity constraint.

We then apply the generic formalism of equation (11) to
the parametric decay of a pump RSAE €, into a RSAE side-
band €, and a BAE Q3, and taking Q,=Q, + Qg as the
matching condition without loss of generality. Here, for
simplicity, we assume all three SAWs are dominated by
single n and m, typical of SAWs excited at g, with large
distance between mode rational surfaces,

kikivA

v = (b —bm(l - ) (12)

Wy Wy

¢ = Aexp [—i(wt — np +mb)] d(x), (13)

where A is the slowly varying amplitude, @ is the parallel
mode structure [55] localized around G, X =ng—m, and

11

J1®9P’dx = 1is taken as normalization condition. Consider-
ing wg ~ O(w,) to maximize the LFAM ion Landau damp-
ing, we have |wy|=|w;|> |ws| and similarly |ko| =
k1| ~ O(1/(gRy)) > |ky]. Thereby, the gmin surface actually
corresponds to the rational surface of the LFAM, as in the
analysis of [49, 50], addressing a case of practical interest
for DIII-D [50, 137].

The nonlinear equation for €, in the WKB limit follows
from

__Akl

Ko dee

b\&i6¢, = @ . 60000 , (14)
which, after multiplying both sides by @, and averaging
over the fast radial scale, yields the eigenmode dispersion
relation of
béA, = (A:; o @5 PP Ds) Ay, (15)
w X
with (--+), = [---dx and (-°.) denotes weighting over the
radial mode structures. Similarly, for the LFAM, one has

|
X ke
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Meanwhile, combining equations (15) and (16), one arrives
at the dispersion relation for the RSAE parametric decay

A
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Here, we note that All;‘,,k A',z" x> and define an =

A~k A~ kg N .
akokako,k;, C =(P, P, Dy),, which can be estimated by

taking a model profile of @. Meanwhile, the mode structure
averaged operators are symbolically written here, noting that
they are predominantly even with respect to the g, surface.
In order to estimate the onset condition for the spontaneous
decay, we expand & = (id,,E)(0, +y1) = Qi/w)(y +y)),
and similarly éB =~ (=2i/wg)(y +vg), with y the growth rate
of the parametric decay instability, v, and s the respective
linear damping rates of €, and Qg from the anti-Hermitian
parts of &, which are dominated by electron and ion Landau
dampings, respectively. Equation (17) then becomes
——ClAf

~ A

1¥B

2
G+ +re) = (A ) (18)

Thus, the condition for RSAE spontaneous decay can be
given as

an>0,

(19)

ky
ko, kg

C2|A0| >Y1YB>

(20)

~ A

A 2
(M) 55
4b,by
with equation (19) determining the preferred nonlinear
couplings in the perpendicular wave-vector space, and equa-
tion (20) corresponding to the threshold for the nonlinear
drive to overcome the damping of ©; and Q3.
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To gain more insights and shed light on the practical
relevance of the present mechanism, we take the WKB limit
and enforce the ordering |kjg| < 1/(gRy). In this case, an
can be reduced to

_ kiokiivi

&Nz(bo_bl)(bo_bl_bB)(l ) (21)

Wy
Still, this expression depends sensitively on both the parallel
(related to frequency) and the perpendicular wavenumbers of
the three SAWs involved, which determine the scattering
direction of the spontaneous decay. Nevertheless, a particu-
lar interesting scenario can be identified as the ‘normal
cascading’ of €, into high-n short wavelength regime,
|k, 1| = |k, g| > |k, o|, where the nonlinear coupling is domi-
nated by the radially fast varying inertial layer. Then,
(bo—b))(by—b, —bp) >0 and 1—kjokj Vi /(wow;) >0 could
also be satisfied if €, resides above the SAW CAP, which
may be achieved noting the potentially dense RSAE/KRSAE
spectrum in burning plasmas. Note also that the LHS of
equation (20) is proportional to b,, and thus, it also favors
the normal cascading scenario. The scattering to large
|k, 1]>> |k, ol, high-n, region indicates stronger symmetry
breaking, and thus, more significant resonant particle trans-
port. The threshold on the pump RSAE amplitude can be
estimated as 6B’ ,/B; 2 (1077) assuming typical plasma
parameters [43].

Another important implication of the present mechanism
is the collisionless ion heating via the fuel ion Landau damp-
ing of the nonlinearly generated LFAM. To give an order of
magnitude estimation of the heating rate, we consider the
feedback of the sidebands to the RSAE pump wave,

Booy = —— Ak
00 — _O.TO koK,

A ko
s Tk e

CAAg. (22)

Using local expansions of & in equations (15), (16), (22),
one obtains the coupled three wave equations,
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(25)

Possible solutions of this coupled driven-dissipative system
include fixed point attractor, limited cycle oscillation, or
even period doubling route to chaos [138]. Here, we give an
order of magnitude estimation of the saturation level of Ag
from fixed point solution of equations (23) and (25), which
is then used give the ion heating rate as

ne* 5 )
Pi = z'waBamBSB,?{TbBlAB|

j (26)
=107yonT;,
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where threshold estimate for the RSAE pump decay inten-
sity of |6B_o|*/B2 > (1077) given above was used. Taking
v/w~O(107) as a typical ordering (e.g., from figure 3(b)),
this shows that the fuel ion heating power density could be
comparable to the expected alpha particle power in burning
plasmas, P~ nT /tg, with 75 the energy confinement time
typically of the order of seconds. Thus, the present heating
mechanism via LFAM collisionless damping is expected to
be a possibly important supplement to the alpha channeling
process in burning plasmas. Note also that the secondary
LFAM has a narrower extent than the pump RSAE, thus, the
deposited power will be strictly localized around g, surface
in the core region.

3.3. Modulational instability and the generation of ZFZS

The spontaneous excitation of ZFZS by a pump wave was
firstly considered for drift and drift-Alfvén waves as a
paradigm case [131], and then extended for TAE [51] and
BAE [139]. It was shown that for the TAE, the generation of
zonal magnetic field, i.e., zonal current (ZC) is dominant
over the electrostatic zonal flow (ZF), mainly due to the
magnetically trapped-ion enhanced polarizability [62].
However, for the BAE with |kjva/w| ~ 0, the MX reflecting
the electron response becomes much smaller than the RS for
ions, and the generation of fine radial scale ZF is preferred
[139]. For the RSAE, the analysis mainly follows from a
similar argument [52]. The waves in the nonlinear coupling
include the RSAE pump wave Q(wy, ko) described by the
ballooning mode decomposition [55],

Spo = Agelerme=mod) Z e P, (x—j)+cc.,  (27)
J

the zonal fields Q,(w,, k,),

8¢, = A e S udr Z @, (x— j)+cc., (28)
j

with, noting that the zonal fields are characterized by n =0,
summation over j denoting the radial structure due to RSAE
poloidal harmonics; and the upper/lower sidebands induced
by the ZFZSs’ feedback to the pump wave, Q. (w.,k.),

6¢i — Ai ej:i(fwt t+ng—mygb) ei(fwztﬁ]" kzdr)

xZe*‘j"{ Po(x=J) }+c.c..

Dy (x—J)

Similar forms for ¢ are assumed and the frequency and
wavenumber matching conditions are implied. Here, consis-
tent with the previous treatments [139], the ZFZSs are
assumed to contain a fine-scale radial structure in @,,
denoted by the summation over j in equation (28), in addi-
tion to the well-known meso-scale envelope in k,.

Nonlinear equation for the ZF generation can be derived
from the surface averaged vorticity equation (3),

(29

2 12
- kioVa
CL)Z

- —iikzkg.o( )(A+A;§ —AA).  (30)
BO 0

W X600,
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Here, X» = X./(k,p))* = 1.64°€ '* is the magnetically trapped- __p 2F 16001 [ 1-Kjovilwy A 35
ion enhanced polarizability [62]. The finite factor .=-At 3Ey/0w, \ 2 + w, ) 35

oc (1 —kjyvi/wy) denotes the breaking of pure Alfvénic state
for discrete AEs, and, in the specific RSAE case considered
here, by the g-curvature; i.e., 6°q at ¢mn. Here, we have
neglected the EP’s nonperturbative effect by letting @, being
purely real. Interested readers may refer to [124, 140] for an
extension to more general cases where resonant EP contribu-
tion may render the ZF generation to a ‘forced-driven’
process. Meanwhile, the generation of ZC follows from
equation (5),

kzkﬁ,()

Wo

Cc
oY, =i—
2 "B,

(ALA;-A_Ap). (31)
On the other hand, when considering the modulation of
ZFZS to the pump RSAE, the equations for the sidebands
can be derived from equations (3) and (5) as [52, 139]

) . C > ) kﬁ,Ovi 2
2. E.,6¢, =i k= koo = ==k .
: Byw. 50 I (32)
xk,k . (0, —ady,).
6,0 { 6¢O } ( ¢ lp )

Here, & takes the form of equation (8) in the local WKB
limit. The coupling coefficient

—2k;, kﬁovi /W)

-2 -1 K

1.0

a

vi/w}’

depends sensitively on the linear properties of the pump
RSAE, with a particular important role played by the
|kjova/wol value. For a RSAE close to the TAE frequency
range, |kjol = 1/(2qR,) and |kjova/wol = 1, 0one has @ = 1 [51].
Instead, for a BAE-like RSAE with [kjova/wol <1, ax1
instead [139]. Combining equations (30)—(32), we finally
arrive at the dispersion relation for the modulational instabil-

ity,

1- kﬁovi Jw}

)

1

S,

[0

Wy
}7

)2 K, = ki = KL Kjova /@y

2
kJ_,iw()

1 :FMP[( £

_(l—kﬁ)ovi/wé @
ﬁ:(

w2,
the nonlinear coupling coefficient and k3, =k>,+k;. By
expanding &, locally about the RSAE dispersion relation,
E. = (0Ey/0wp)(xw, — A), with

1

5 33)

wo
with

Ckzk9,0
B,

bl

A = g2 P&

T ol 0k, 34
‘ 2080/8&)0 ’ ( )

the frequency mismatch of the sidebands due to ZFZS modu-
lation, and letting w, = iy,, equation (33) can be written as
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Equation (35) essentially summarizes the most interest-
ing features of ZFZS excited by the RSAE modulational
instability. The first term on the RHS corresponds to the
threshold due to the frequency mismatch, while the second
term is the nonlinear drive associated with the pump RSAE
amplitude. The threshold condition can be estimated to be
6By/By ~ O(107*) for typical plasma parameters [52], simi-
lar to the cases of TAE [51] and BAE [139], and slightly
lower than the parametric decay instability in section 3.2.
Moreover, the two terms in the parentheses correspond to the
nonlinear drive to ZF and ZC, respectively. One sees that the
previous results for TAE [51] and BAE [139] are well recov-
ered in the appropriate limits. The ZC is preferentially
excited when the RSAE is in the TAE frequency range and
A > 0. On the other hand, the drive to ZF is generally weak
due to the neoclassical polarizability effect, unless
|kjva/w| =~ 0 and the RSAE is close to a BAE. In any case,
the spontaneously generated ZFZSs could interact with DW
turbulence and regulate the anomalous transport in the
plasma core.

The above treatment considers the ‘linear’ growth stage
of the modulational instability. For the strongly nonlinear
stage where the feedback of daughter waves to the RSAE
pump wave is significant, equations (30)—(32) could also be
generalized without separating the sidebands from the pump

wave, as [52]
2
1
— K- K
) 0-)0( z L,O)

V2 [ w? a
i (ko =Ko + = 160uf 660 (36)
0

2 .2
k”’()v N

2

ck,k
kioao(s(bo == (—0’0

|

This dispersion relation could be solved numerically as an
initial value problem of the coupled pump-ZFZS system [141,
142]. Here, in order to make analytical progress and give an
order of magnitude estimation on the saturation amplitudes,
we consider the ‘TAE-limit’, where the generation of ZC is
dominant, and perturbatively expand &; = (0Ey/dwy)%
@10, —A), with A given by equation (34) and denoting the
nonlinear frequency shift. Equation (36) can then be reduced to

sl

i.e.,, a nonlinear equation describing the time evolution of
0¢p including the nonlinear scattering to nearby eigenstates
and the self-modulation by the ZFZS generation. To esti-
mate the saturation amplitude as a fixed point solution,
corresponding to the pump wave being scattered into stable
eigenstates by the self-consistently generated ZFZS, we take
the balance of the frequency shift and modulation terms in

equation (37), as
32

2
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Using typical tokamak parameters, equation (38) gives a
rough ordering of the RSAE saturation amplitude
6By/B ~ O(10™), which is of the same order of the typically
observed RSAE amplitude driven by EP as well as of the
estimated onset threshold from equation (35). Note that in
the above estimation, we only focus on the pump RSAE and
do not explicitly consider the nonlinear distortion of the
MHD equilibrium. However, the generated ZC itself is a
corrugation of the equilibrium magnetic field nearby @i,
and we have 6q/q~O(107) from the above ordering.
Noting the unique sensitivity of the RSAE spectrum to a
small variation of g.;, at high n, equation (38) denotes a
rough saturation criteria as the local modulation of SAW
continuum is comparable to the frequency mismatch
between RSAE and SAW CAP. Thus, the generation of ZC
may provide a novel saturation mechanism for the RSAE
via, simultaneously, scattering the RSAE pump wave in both
frequency and wavenumber domains and local distortion of
the SAW continuum [52]. This is conceptually analogous to
references [121, 122] which analyze the TAE saturation by
enhanced damping via continuum distortion in the MHD
regime. In future works, it would be interesting to investi-
gate the saturation mechanism more self-consistently by
considering both nonlinear effects on the same footing,
where the global RSAE dispersion relation [7] is fully
accounted for.

4. Conclusion, discussion and outlook

In this paper, we review several key nonlinear dynamics of
the n ~O(10) reversed shear Alfvén eigenmode excited by
energetic particles in the core of burning plasmas. Guided by
the general theoretical framework [2] and the relevant
nonlinear physics, the analyses are further subdivided into
the wave-particle resonant interaction and the wave-wave
coupling adopting different approaches as needed. Using
simplified hybrid MHD-kinetic simulations, the structures of
phase space resonance for both trapped and circulating EP
with the RSAE are illustrated. It is shown that the radial
resonance width is typically broad and comparable with the
radial width of the RSAE. This property indicates that, in
order to reach saturation,the resonant EP radial redistribu-
tion scale must be comparable with the radial mode width
and EP radially decouple from the localized RSAE mode
structure. The resultant resonant EP transport induced by a
RSAE is nonlocal, generally coherent, and contains a signifi-
cant convective component. Effectively, the core-localized
RSAESs could pump out EP to the outer-core region, and may
lead to global cross-region interactions with, e.g., the TAEs.
Further to this, two channels of nonlinear mode
couplings are studied by the nonlinear gyrokinetic theory,
considering the spontaneous decay of a finite amplitude
pump RSAE as an application. It is shown that many RSAEs
as well as kinetic RSAEs with radially overlapped mode
structure and closely separated frequencies may couple
together and generate a low frequency Alfvénic mode. In
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addition to spectral cascading and mode conversion to short
wavelength kinetic fluctuations, this decay channel may lead
to the spectral energy transfer to LFAM, which could effi-
ciently heat thermal ions via collisionless damping. Thereby,
the parametric decay of RSAE may serve as a supplemen-
tary core-localized alpha channeling mechanism by transfer-
ring EP energy to fuel ions. A finite amplitude RSAE could
also spontaneously excite the zero frequency zonal field
structures via modulational instability, including both zonal
current and zonal flow. The previous studies on the TAE [51]
and BAE [139] are well recovered as limiting cases, and the
branching ratio of the ZC versus ZF is shown to be mainly
determined by the pump RSAE’s frequency range, i.e., its
closeness to the TAE or BAE limits. It is shown that, in the ‘T
AE limit” where the generation of ZC prevails, the estimated
ZC level could locally distort to the continuum structure
around RSAE location, and thus, provide a novel and effec-
tive saturation channel for the RSAE.

The concept of ‘saturation’ is discussed throughout this
article in various aspects, emphasizing that the related theo-
retical study and experimental validation is still an active
research field. Indeed, all three nonlinear channels discussed
here could lead to the saturation of an unstable mode, as
either a weakening of external EP drive or an increased wave
damping by spectral energy transfer. In this work, this
complication is treated by separately inspecting the relevant
physics and spatiotemporal scales. For example, in section 2,
we mainly focus on the wave-EP resonant dynamics taking
place on the mesoscales of the order of the EP orbit width,
which is relatively very fast, from the linear growth stage to
the initial saturation where significant EP transport takes
place. While in section 3, we start from this initial saturation
point and explore the mode’s further evolution by wave-
wave couplings dominated by short radial scale scattering. In
practice, such timescale separation may not be strictly valid,
as some nearly thresholdless forced driven mode coupling
processes could take place in the linear growth stage [124,
143], including the excitation of ZFZS and LFAM. Thus, a
thorough and quantitative investigation of the RSAE satura-
tion and its impact on particle transport and fusion perfor-
mance naturally requires taking both routes to the nonlinear
physics into consideration on the same footing [2, 58, 68].
This is of particular importance but extremely channeling for
either analytical theory [140] or global gyrokinetic simula-
tions [144, 145]. A viable route to tackle the difficulty of this
multi-scale, multi-physics problem could be provided by the
phase space zonal structure theoretical framework [2, 68, 69,
108, 119], which describes the nonlinear wave-particle inter-
action using coupled Dyson-Schrédinger model equations
and could be naturally extended to nonlinear wave-wave
couplings in the form of nonlinear radial envelope equations.

In the theoretical analyses of the nonlinear mode
coupling, to simplify the analytical derivation, we mostly
neglect the effect of plasma nonuniformity by considering
the local WKB limit of the RSAE dispersion relation.
Including the plasma nonuniformity would introduce the
diamagnetic effect and the structure of the SAW continuum,
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allowing us to generalize the present analysis to the cases of
KBM and AITG. One may also self-consistently study the
RSAE saturation via the self-generated ZC. Such an exten-
sion could be tedious but straightforward. Some recent anal-
yses [132, 146] have already begun to explore possible inter-
esting implications of these physics.

We finally discuss some future research topics that stem
from the present analysis. Although the EP transport by a
single RSAE is predominantly convective, many other
effects, such as overlapped resonances by multiple modes
[147] or background turbulences [148], may break such
coherent phase space structures and possibly render the long
timescale EP transport diffusive. Thus, a proper characteriza-
tion of long timescale EP confinement should include more
physics gradients beyond the present simplified study. In
fact, both diffusive [149] and coherent [109] types of EP
flow have been reported experimentally, implying that quan-
titative prediction should be explored case-by-case. Another
factor neglected in the present work is the interplay with
universal microscopic turbulences, despite that the sponta-
neously generated ZFZSs are bound to have an intense inter-
actions with them [53]. This is a broad and intense research
field, which has recently drawn significant research atten-
tions on the cross scale interactions between AEs and turbu-
lences as either direct coupling [150, 151], or indirect inter-
action via ZFZS [54, 152—-154] or the EP phase space struc-
tures [54, 145, 152, 153]. All these complications demon-
strate that the reactor-grade burning plasma is inherently a
complex multi-scale system [2, 54], where the RSAE might
play a central role.
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