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Abstract
One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy (LIBS) is
the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem,
this paper investigated a combination of time-resolved LIBS and convolutional neural networks
(CNNs) to improve K determination in soil. The time-resolved LIBS contained the information
of both wavelength and time dimension. The spectra of wavelength dimension showed the
characteristic emission lines of elements, and those of time dimension presented the plasma
decay trend. The one-dimensional data of LIBS intensity from the emission line at 766.49 nm
were extracted and correlated with the K concentration, showing a poor correlation of
R?. = 0.0967, which is caused by the matrix effect of heterogeneous soil. For the wavelength
dimension, the two-dimensional data of traditional integrated LIBS were extracted and analyzed
by an artificial neural network (ANN), showing R%, = 0.6318 and the root mean square error of
validation (RMSEV) = 0.6234. For the time dimension, the two-dimensional data of time-decay
LIBS were extracted and analyzed by ANN, showing R?, = 0.7366 and RMSEV = (.7855.
These higher determination coefficients reveal that both the non-K emission lines of wavelength
dimension and the spectral decay of time dimension could assist in quantitative detection of K.
However, due to limited calibration samples, the two-dimensional models presented over-fitting.
The three-dimensional data of time-resolved LIBS were analyzed by CNNs, which extracted and
integrated the information of both the wavelength and time dimension, showing the
R?, = 0.9968 and RMSEV = 0.0785. CNN analysis of time-resolved LIBS is capable of
improving the determination of K in soil.

Keywords: quantitative detection, potassium (K), soil, time-resolved laser-induced breakdown
spectroscopy (LIBS), convolutional neural networks (CNNs)

(Some figures may appear in colour only in the online journal)

1. Introduction

Soil is the basis for agricultural production and provides
essential nutrients for crop growth. When a soil’s nutrients
cannot meet the crop’s needs, they will be applied by fertilizer
to increase the yield and enhance the quality of the crop. K is
one of the macro-nutrient elements for plants; it contributes
to the electrical neutralization of anionic charges, protein
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synthesis, control of membrane polarization and regulation of
the osmotic potential [1]. Thus, the quantitative determination
of K is of significant importance to estimate soil nutrient
supplying capacity for crop production.

Traditionally, analytical techniques, such as inductively
coupled plasma atomic emission spectrometry (ICP-AES) [2],
inductively coupled plasma mass spectrometry (ICP-MS) [3]
and so on, have been used to determine the K concentration of
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soil. However, these methods could not meet the precision
farming needs of in situ and real-time detection. Laser-
induced breakdown spectroscopy (LIBS) [4-9] with the
advantages of real-time, non-contact, micro-destructive and
multi-element, has been researched to determine K in soil.

One-dimensional (1D) data of single characteristic
emission lines have been used to determine K in soil. Hussain
et al employed an emission line of 404.7 nm to analyze the
soil collected from a greenhouse, showing a determination
coefficient (R2) of 0.9873 with a precision of around 2% [4].
Pareja et al prepared samples from three soils and one ferti-
lizer, and built models with a 766.49 nm line of both LIBS
and laser ablation-LIBS (LA-LIBS), presenting R? of 0.6656
and 0.8619, respectively. More soil samples of five types
were collected and used to build an LA-LIBS model, showing
R* = 0.624 [5]. It was demonstrated that different types of
soils were effected by a complex matrix and presented a poor
model precision. Meng et al mixed KNO; with one soil
sample and used an emission line of 769.90 nm to quantify,
showing a relative error of calibration under 5%. Another
sample set with 12 different soil samples of certified reference
material (CRM) was collected. A poor relationship between K
concentration and spectral intensity was presented [6]. The
LIBS model with a single variable is capable of determining
K in soil of the simple type. However, for different types of
soil with the complex matrix, it is difficult to build a precise
model with only 1D emission line data.

More emission lines have been used to build quantitative
models of K in the soil. Dong et al collected 60 agricultural
soil samples and used the ratio of lines of Si at 476.85 nm and
K at 766.49 nm to calibrate, showing a K predicted relative
standard deviation of 9.26% [7]. Zhang et al prepared 13
simulated soil samples and selected a Li line of 812.66 nm as
an internal standard. K lines of 766.49 nm and 769.90 nm
were used to build the regression curve, showing an R* of
0.9337 [8]. Furthermore, two-dimensional (2D) data of tra-
ditional LIBS spectra in a region have been developed for a
model. Yu er al collected five CRM soil samples to build a
partial least squares (PLS) model with 338 spectral lines,
presenting R* = 0.9179 and a root mean square error of
validation (RMSEV) = 0.6134 [9]. Guezenoc et al collected
39 agricultural soils and built a PLS model with 97 spectral
lines, presenting R* = 0.84 and RMSEV = 1.49 [10]. Models
built with multi-variable 2D data of LIBS are capable of
quantifying K in agricultural soil and different types of soil.

Compared to the model built with the 1D data of a single
emission line, a model with 2D data of multi-variables
introduces more information from multi-spectral lines. An
abundance of spectral information could assist LIBS quanti-
tative analysis and reduce the effect from the material matrix.
Time-resolved spectroscopy is a method to further enrich
LIBS information and to extend data dimension [11]. The
formation and decay of plasma is a dynamic process, and the
radiation intensity changes over time [12]. Time-resolved
LIBS is a type of three-dimensional (3D) data, composed by
spectra integrated at a set of time windows, and includes
both wavelength and time dimension information. Several
chemometrics methods, such as independent components

CLuetal
Table 1. CMR soil samples.
K concentra-

Sample No. tion (%) Soil type Sample set
1 0.17 Latosols Calibration
2 0.90 Red soil
3 1.81 Fluvial

sediments
4 1.89 Loess
5 2.01 Loess
6 2.12 Sandy soil
7 2.35 Fluvial

sediments
8 2.80 Aeolian soils
9 0.54 Red soil Validation
10 1.24 Yellow-red soil
11 1.75 Saline-

alkali soil
12 2.19 Fluvial

sediments
analysis, multivariate curve resolution—alternating least

squares etc [11, 13], have been used to mine time-resolved
LIBS data. It is possible that further analysis of this 3D data
has the potential to improve LIBS quantitative determination.

A convolutional neural network (CNN) is a type of
machine learning method, which is inspired by the biological
processes of the cat visual cortex. With the advantage of easy
training and the capability to deal with both 2D and 3D data,
it has been a powerful tool for image classification [14] and
video action recognition [15]. Therefore, it was and further
has been used to analyze spectroscopic data, such as Raman
spectroscopy [16], near infrared spectroscopy [17], hyper
spectroscopy [18] and so on. As CNNs present the state of the
art for analysis of the transformed data in different orienta-
tions and scales, it was considered to adjust the LIBS spectral
transformation caused by the matrix effect in this paper.

The aim of this paper is to troubleshoot the LIBS
quantitative problem caused by the matrix effect using the
method of combining time-resolved LIBS and CNNs. First, a
typical 1D emission line was used to correlate with the K
concentration to reveal the matrix effect of heterogeneous
soil. Then, the 2D data of traditional LIBS and time-decay
LIBS were analyzed by an artificial neural network (ANN) to
discover the K concentration relationships with wavelength
and time dimension spectral information, respectively.
Finally, 3D time-resolved LIBS data were analyzed by CNNs
to integrate both wavelength and time dimension information
and would apply to the K determination of soil.

2. Experimental

2.1. Samples

As shown in table 1, 12 CRM soil samples (National Institute
of Metrology, China) with a K concentration of 0.17%-2.80%
were collected. To avoid splashing, each sample was placed
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Figure 1. The LIBS instrument setup.

into an ® 36 x 5 mm aluminum cap, and then the top of the
cap was smoothed and pressed at 20 MPa for 1 min by a DY-
30 tablet machine (Tianjin Keqi High & New technology
corporation, China). Twelve samples were separated into two
sets by the duplex method [19], resulting in eight samples for
the calibration set and four samples for the validation set.

2.2. LIBS spectra collection

The LIBS instrument used in this work is shown in figure 1. A
CFR200 Q-Switched Nd:YAG laser (Quantel laser, France)
was employed as a light source to induce the plasma. The
plasma was collected by an SR-OTP8024 fiber (Andor, UK),
delivered to an SR500 Czerny-Turner spectrometer (Andor,
UK), and sensed by an Istar intensified charge-coupled
detector (Andor, UK). The spectral range was set to
723.62-808.24 nm, with a spectral resolution of 0.08 nm. The
delay time between the laser pulse and the signal acquisition
varied in the range of 0-98 us with an interval of 1 us, and the
gate width was set to 1 us. Each sample was scanned in
triplicate.

2.83. Data analysis

All the calculations, analyses and graphics were performed in
Matlab R2012b (The Mathworks Inc., USA).

2.3.1. 1D LIBS intensity. A wavelength of 766.64 nm was
selected as the K characteristic emission line [5, 7]. The linear
correlation was analyzed between the characteristic line
intensity and K concentration.

2.3.2. 2D LIBS spectra. For the wavelength dimension, the
fourth spectrum of each sample was extracted and analyzed
by ANN. For the time dimension, the intensity decay curves
were extracted at a wavelength of 766.64 nm and then
analyzed by ANN.

2.3.3. 3D time-resolved LIBS. To compress the data and
simplify the calculation, the raw time-resolved LIBS data
were calculated with principal component analysis (PCA)
using PLS Toolbox 6.7 (Eigenvector Research Inc., USA).

The size of the compressed matrix was set according to
principal components (PCs) capturing 100.00% spectral
variance of sample 1 [20]. The spectral matrix was
optimized to 20 x 20; in other words, the spectral matrix
was compressed to 20 spectral PCs and the first 20 delay time.
The compressed data were pretreated by normalization to
standardize the data, and then input to the CNNs.

The CNNs were programmed [21] as shown in figure 2.
Convolutional kernels were optimized with 3 x 3, 5 x 5,
7 x7,9%9, 11 x 11 and 13 x 13, then set to 7 x 7 and
initialized [22]. The rectified linear unit (ReLU) [23] was used
as the activation function, and defined as:

x, ifx >0
S = {ax, otherwise M

where x was the convoluted input data. A convolutional layer
was expressed as:

v/ :f[Zki/ * x/ + bj) )

where x/ and y’ were the ith convoluted input and output data,
k¥ and b’ were the convolutional kernel and bias parameter,
respectively. In the convolution layer, 20 feature maps of
14 x 14 were obtained, and then processed by mean-pooling,
which adopted the average value from each neuron cluster.
The output of the pooling layer was rasterized and fully
connected. The backpropagation was used to optimize k and b
to minimize the error between the fully connected output
layer and reference value. The CNNs were trained with an
iteration of 3000 times.

The correlation coefficient (R), R* and root mean square
error (RMSE) were used to evaluate the model performance.

3. Results and discussion

3.1. LIBS spectra

The time-resolved LIBS spectra of soil sample 1 are described
in figure 3. For the wavelength dimension, seven main peaks
and several small peaks were found. Based on the NIST
atomic spectra database, the main peaks originated from the
atomic lines of 742.36 nm (N), 744.23 nm (N), 746.83 nm
N), 766.49nm (K), 769.90 nm (K), 777.42nm (O) and
795.54 nm (K). For the time dimension, the peak intensities
decreased with time. The first spectrum (delay time of O us)
presented a high baseline from continuum emission. Self-
reversal was found at the N line (746.86 nm) of the first
spectrum (delay time of O us) and O line (777.42 nm) of the
first to third spectra (delay of 0, 1 and 2 us).

3.2. Analysis of 1D LIBS intensity

As shown in figure 4, the 1D LIBS intensity at 766.49 nm
regressed with the K concentration, resulting in R?. = 0.0967,
RMSEC (root mean square error of calibration) = 0.7447,
R2?, = 0.2700 and RMSEV = 0.6762. This low R%. demon-
strated that only the 1D LIBS peak intensity could not
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Figure 2. The structure of CNNs.
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Figure 3. The time-resolved LIBS of sample 1.
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Figure 4. The regression result of the 1D data.

quantify the K in the soil. The samples used in this paper
showed a high heterogeneity, which were collected from eight
provinces of China and included eight different types. This
led to a strong matrix effect [6] from both the chemical
composition and physical properties [12] of the soil. It was
difficult to build a K quantitative model using only LIBS peak
intensity, especially for predicting different types of soil.

3.3. Analysis of 2D LIBS spectra

3.3.1. Spectra of the wavelength dimension. ~As the first three
time-resolved spectra presented self-reversal at the emission
lines of O and N, the fourth spectrum of time-resolved LIBS
(figure 5(a)) was used as the integrated spectra. The fourth
spectrum was collected with a time delay of 3 us and a
width of 1 us; in other words, it was the integration of the
time window of 3-4 us. The ANN result of the fourth
spectrum is presented in figure 5(b), showing R%, = 1.0000,
RMSEC = 0.0000, R%, = 0.6318 and RMSEV = 0.6234. As
only a limited eight samples were used to calibrate, the model
performed over-fitting with significantly better results of
calibration than that of independent validation. However,
compared to the 1D LIBS intensity, the 2D data of the
wavelength dimension performed better. In total, 1024
variables were employed in the model; the peaks of 766.49,
769.90 and 795.54 nm originated from K, and other variables
originated from non-K. The non-K emission lines responded
to the sample chemical component, assisted revision of the
K peak transformation caused by the matrix effect, and still
contributed to the K model.

3.3.2. Spectra of the time dimension. The plasma decay
at the K emission line of 766.49 nm is shown in figure
6(a). During plasma decay, the intensity of K decreased at
the beginning of ignition, and then turned to level off.
The ANN result of the time-decay LIBS and K concentration
is presented in figure 6(b), showing RZ. = 1.0000,
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Figure 6. (a) The time-decay LIBS of 766.49 nm, (b) The ANN result of time-decay LIBS.
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Figure 7. Normalized PCA scores of sample 1 time-resolved LIBS.

RMSEC = 0.0000, R?>, =0.7366 and RMSEV = 0.7855.
The model performed over-fitting also. Compared to the
1D data of the LIBS intensity integrated at one time
window (figure 4), the time-decay LIBS model presented a
significantly higher correlation with concentration. This
demonstrated that LIBS information at the time dimension
could assist quantitative detection of K in soil.

3.4. Analysis of 3D time-resolved LIBS

The normalized PCA scores of the time-resolved LIBS
(figure 3) of sample 1 are shown in figure 7. A significant

2
——RMSEC
- = RMSEV

0 1000

2000
Iterations

3000

Figure 8. The CNNss iteration results.

score change was found at the PCs of 1-5 and the time delay
of 0-3 ps. The matrix of 20 x 20 was used as the input layer
of the CNNS, resulting in 99.6% data compression. As shown
in figure 8, the CNNSs iteration results of RMSEC and RMSEV
plummeted at about the first 200 iterations, and then gradually
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Figure 9. The CNNs model result.

decreased. The RMSEC consistently decreased to 3000
iterations, indicating the model optimization capability of
backpropagation. While the RMSEV turned to level off after
1150 iterations, the iteration reached the optimized predictive
result for independent external validation.

The CNNs model result is shown in figure 9, resulting in
R?. = 0.9998, RMSEC = 0.0114, R?, = 0.9968 and RUSEV =
0.0785. The predicted result was much better than that of the 1D
and 2D data. The time-resolved LIBS contained both wavelength
and time dimension information, and this information was
extracted and integrated by the CNNSs. It is demonstrated that
CNN analysis of time-resolved LIBS spectra is capable of
improving the determination of the K concentration in soil.

4. Conclusions

The 1D data were extracted from the LIBS intensity at an
emission line of 766.49 nm, and then correlated with the K
concentration. A poor correlation of R?%, = 0.0967 was found,
revealing the matrix effect of heterogeneous soil. This
demonstrated that it was difficult to build a K quantitative
model using only LIBS peak intensity. The 2D wavelength
and time dimension data were extracted and analyzed by
ANN, resulting in R?, = 0.6318, RMSEV = 0.6234 and
R?, = 0.7366, RMSEV = 0.7855, respectively. Due to lim-
ited calibration sample numbers, the models performed over-
fitting. However, the model of wavelength dimension indi-
cated that non-K emission lines could assist in the revision of
the K emission line transformation caused by the matrix
effect, and the model of time dimension demonstrated that
time-resolved LIBS information could assist in the quantita-
tive detection of K in the soil. The 3D data of time-resolved

LIBS were analyzed by CNNs, showing R2, = 0.9968 and
RMSEV = 0.0785. The CNNs extracted and integrated the
information of both the wavelength and time dimension,
which was more helpful in improving the model performance
than that of traditional 2D LIBS. CNNs analysis of time-
resolved LIBS spectra is capable of improving the determi-
nation of K in soil.
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