
Plasma Science and Technology
     

PAPER

Diffusion of ions in an electrostatic stochastic field and a space-
dependent unperturbed magnetic field
To cite this article: Marian NEGREA 2020 Plasma Sci. Technol. 22 015101

 

View the article online for updates and enhancements.

This content was downloaded from IP address 218.104.69.114 on 04/11/2019 at 06:09

https://doi.org/10.1088/2058-6272/ab491e


Diffusion of ions in an electrostatic
stochastic field and a space-dependent
unperturbed magnetic field

Marian NEGREA

Department of Physics Association Euratom-MEdC, Romania University of Craiova, A.I.Cuza str.13,
200585 Craiova, Romania

E-mail: mnegrea@yahoo.com

Received 18 July 2019, revised 30 September 2019
Accepted for publication 30 September 2019
Published 1 November 2019

Abstract
We calculate the diffusion coefficients for ions moving in a prescribed electromagnetic field. The
field is considered to be a superposition of an electrostatic stochastic field and a space-dependent
and sheared magnetic field. We have considered as parameters involved in the calculation of the
diffusion coefficients the shear ion Kubo number Ks

ion, the electrostatic Kubo number K, the
parallel shear ion Kubo number Kzs

ion, and the parallel thermal ion Kubo number K .z
ion A

geometrical parameter which is the measure of the product of the stochastic perpendicular
correlation length and the gradient in the magnetic field strength (see definitions in the text) is
found not to be important in our calculation. The results concerning the diffusion coefficients
obtained in our model are in agreement with experimental data and with those corresponding to
other models, and the neoclassical and anomalous values for the diffusion coefficients are
obtained.

Keywords: magnetic field, turbulence, diffusion

(Some figures may appear in colour only in the online journal)

1. Introduction

Transport of particles in fusion plasma is still a very important
issue for researchers. The theoretical results obtained for the
transport coefficients from classical transport theory (see e.g.
[1]) are not in agreement with the experimental results. The
agreement is improved if the geometry of the magnetic field is
taken into account for the calculation of the transport coeffi-
cients and the neoclassical transport theory is built (see e.g.
[2] and [3]). Even neoclassical theory cannot explain some
aspects of the diffusion of particles in a chaotic (turbulent)
plasma. In this kind of plasma, transport is called anomalous
if turbulence dominates the classical and neoclassical con-
tributions to transport. The approximation that treated trap-
ping in a new manner compared with the papers of Isichenko
M B [4, 5], the numerical treatment given in [6] and [7] and
used also in our paper to calculate the diffusion coefficients is
the decorrelation trajectory method (DCT). There exist also a
large amount of experimental, theoretical, and numerical

papers (see, for example, references [8–26]) that are dedicated
to the understanding and control of transport in magnetically
confined plasmas. The DCT is presented in the following
selection of papers [8, 9, 11, 14, 22, 23].

Results concerning the radial flux of particles obtained in
reference [24] were used in order to calculate the effect of
parallel fluctuations; in our paper only the perpendicular
fluctuations (to the mean magnetic field) are taken into
account. Separation of magnetic field lines, which is impor-
tant for the calculation of diffusion coefficients, has been
studied in many papers; see reference [25] and citations
within. Particle behavior is a complex problem related to the
confinement and transport of the bulk ions and electrons in
plasma and to the plasma–wall interaction. This is a very
important issue for the development of fusion reactors.

Our paper studied the problem of the diffusion of ions in
a space-dependent magnetic field and a divergenceless elec-
trostatic stochastic field. The shape of the diffusion coeffi-
cients of a particle moving in a magnetic field with shear
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combined with an electrostatic stochastic field has been stu-
died in many papers (see e.g. [27]). Numerical studies (such
as ‘direct numerical simulations’) are devoted to the transport
of particles in such a combination of fields (see e.g. [28]). All
these issues are presented in the very good book of Radu
Balescu [29]. Our theoretical results are in agreement with the
experimental ones. In our paper the magnetic field is depen-
dent on the radial coordinate and the electrostatic stochastic
field influences the values of the diffusion coefficients. The
movement of particles was analyzed also in a guiding center
model with a stochastic anisotropic magnetic field [30]. The
results concerning the diffusion coefficients are similar with
those obtained in the present paper. The conclusion is that, at
least from these two different physical models, practically we
obtained the same diffusion coefficient behavior. In our paper
we will use some results obtained in reference [8], and the
paper is organized as follows. The magnetic field model and
the approximate guiding center equations are established in
section 2. In section 3, some details of the DCT approach are
presented and the necessary Eulerian correlations are derived
using a standard procedure of the DCT method. We have also
defined here the parameters (specific to the ions) involved in
the change of the diffusion coefficients, namely the ion shear
Kubo number Ks

ion, the electrostatic ion Kubo number K ion,
parallel shear ion Kubo number Kzs

ion, the parallel thermal ion
Kubo number Kion and the geometrical parameter αR, which
is the measure of the product of the stochastic perpendicular
correlation length and the gradient in the magnetic field
strength. Here the specific parameters of the motion of ions
are defined. Before the section 4 we introduce some com-
ments on the issues related to Kubo numbers, trapping and the
open trajectories. In section 4 we calculate the diffusion
coefficients and averaged global velocities. We also calculate
the trapping time for different values of the parameters. The
conclusions are provided in section 5.

2. The magnetic field model and the approximate
guiding center equations

In our paper we consider that particles are moving in an
electrostatic stochastic electric field combined with a magn-
etic field that is unperturbed and has the form

[ ( ) ( ) ] ( )= +B b X s XB e e 1z y0

where ( ) º -s X XLs
1 with Ls the shear length and the z

component, i.e. Bz that depends on the radial coordinate X and
has the form Bz = ( )+ -B X R e1 z0

1 with 1/R representing
the gradient in the magnetic field strength (density of magn-
etic field lines) in the Ox direction.

The guiding center trajectories are determined from the
approximate equations

( ) ( ) ( ) +
´

º º
t

U
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b
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d
, , , , 2
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where U is the parallel velocity, which we will approximate
here with the thermal one, i.e. Vth. In order to make the system

dimensionless we introduce the typical correlation lengths: λ⊥
is the perpendicular correlation length and λP is the parallel
correlation length along the main magnetic field. τc is the
correlation time of the fluctuating electrostatic field and ε is a
measure of the amplitude of the electrostatic field fluctuations.
The correlation time τc is the maximum time interval over
which the field (the electrostatic potential in our case) main-
tains a given structure and is about 10−5 s, the perpendicular
correlation length λ⊥ is about 10−2 m as was observed by
several plasma turbulence diagnostics looking at the edge
region of the tokamaks [31, 32] and λP is about 1–10 m.
Using the results obtained in [8] and the dimensionless
quantities x, y, z, τ and j defined as
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we obtain the following dimensionless Langevin system of
equations [8]:
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We write here the different Kubo numbers already defined in
[8] entering the system of equations given in (4)–(6):

( )et
l

=
^

K
B

7c

0
2

is the electrostatic Kubo number

( )t
=K

V

L
8s

c th
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is the shear Kubo number
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 

et
l

l
l

= º ^K
B L

K
L

9zs
c

0 s

2

s

is the parallel shear Kubo number and

( )


t
l

=K
V

10z
th c

is the parallel thermal Kubo number. The geometrical para-
meter αR is defined as the product of the stochastic
perpendicular correlation length and the gradient in the
magnetic field strength

( )a l= ^ R. 11R

Considering that the thermal velocity used in the former
expressions corresponds to ions, the following corresponding
Kubo numbers for ions can be defined:

( ) ( )t
=K

V

L
12s

ion c th
ion

s
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( ) ( )


t
l

=K
V

. 13zs
ion th

ion
c

3. Details of the DCT approach

From the orders of magnitude of the different Kubo numbers
given in [8] we can suppose that the term containing Kzs

ion can
be neglected in the equation (6). We also suppose that

( ) l+ ^K x R K1z
ion

z
ion

because [ ]Î -K 10 , 1z
ion 3 and l »^

-x R 10 2. In this case the
equation (6) becomes deterministic with the solution

( ) ( )


t
l

t= +z
V

z 0 14th c

where we can choose ( ) =z 0 0. An implicit dependence on
time appears in the potential and the Langevin system of
equations given in (4)–(6) becomes a 2D system
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For this system the DCT method can be applied in order to
calculate the diffusion coefficient and other quantities of
interest. For the stochastic dimensionless electrostatic poten-
tial ( )j tzx, , we can choose the following spatiotemporal
autocorrelation

( ) ( ) ( ) ( ) ( ) ( )
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and
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If we use solution (14), the function ( )tB becomes
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where definition (13) was used.
The autocorrelation becomes

( ) ( ) ( ) ( ) [ ( ) ]
( )

t t tº = - - +C A B Kx x x, exp 2 exp 1 .
19

2
z
ion

The statistical properties of all the fluctuating quantities are
calculated by taking appropriate derivatives of equations (16)
and (17). We introduce the notations for the ‘directly

fluctuating velocities’ as

( )j j
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v
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From equation (19), we can deduce the Eulerian correlations
between the directly fluctuating velocities Cij ( )=i j x y, , and
the mixed correlations jC i ( )=i x y, using the standard pro-
cedure given in [9–11]:
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where the following general relations were used:
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and also the antisymmetric tensor εij (e e e= - = =1,12 21 11

e = 022 ). Using these correlations we can develop the pro-
cedure of the DCT needed to calculate the components of the
diffusion tensor components specific to our field. We intro-
duce the following change of variable

( ) ( )t tº +K 1 . 26ion z
ion

With this change of variable system (15) becomes (in the
following we will drop the subscript ‘ion’ from τion)
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where the following definitions are introduced:
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z
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. 29zs

ion s
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z
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The expression (29) and the definition given in (9) should not
be confused. System (27) is studied using the DCT method.
The total ensemble of the realizations of the stochastic system
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is a superposition of the subensembles S that are defined by
the electrostatic potential j and the ‘directly fluctuating
velocities’ vi defined in (20) at time 0, i.e.

( ) ( ) ( )j j= =S 0 v 0 v: , 0 , , 0 . 300 0

The probability distribution function of these initial values is
defined as

{ }
( ) ( ) ( ) ( ) ( )

[( ) ( ) ( ) ] ( )

j j p

j

= =

- + +

-P P v P v P

v v

v , 2

exp
1

2
. 31

x y
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0
0 0 0 0 0

0 2 0 2 0 2

3
2

The total Lagrangian correlation tensor components of the
directly fluctuating velocities appearing in system (27) are
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is the Lagrangian correlation tensor in a subensemble S. and
á ñ... S denotes the average in the subensemble. The last
approximation in (33) is the essence of the DCT method. We
have replaced the average velocity in a subensemble with the
velocity obtained by using the solutions ( )txS of the deter-
ministic system given below in equations (37) and (38).

The Eulerian average directly fluctuating velocities
[ ( ) ]t tá ñv x ,j

S in the subensemble S are calculated as

[ ( ) ] [ ( ) ] [ ( ) ( )] ( )

( ) ( )
( )

t t t t j t

t

ºá ñ = +

º =

jv v C v C B

v B i j x y

x x x x

x

, ,

, ,

34

j
S

j
S

j i ij

j
S

0 0

and the explicit expressions for ( ) ( ) ( )t tºv v Bx x,j
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j
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Next, we define, in a subensemble S, a deterministic trajectory
by the following equations of motion:
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with the initial condition

( ) ( )=x 00 39S

( ( ) )t tw x ,x
S S and ( ( ) )t tw x ,y

S S are the total velocities in a
subensemble. In deriving system (37)–(38), we have made the
assumption (specific to the DCT) that ( ) ( )t tá ñx xS S . Using
this assumption the following approximations are valid:

( ) ( )t tá ñx K x KS S
zs
ion

zs
ion and ( ( ) ) t lá ñ-

^b x R K S1 ion

( ( ( ) ))t l-
^b x R KS1 ion. The deterministic DCT solution of the

system is used to obtain the approximate expression of the
Lagrangian correlation (32), (33) where, instead of the

Figure 1. Trajectories and hodographs for =K 0.5s
ion , and four values of the level of turbulence in the subensemble given by j = =v2, 1x

0 0

and =v 1y
0 .
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Lagrangian average of the velocity, the Eulerian average of
the velocity calculated along the solution of system (37), (38)
is used. The average in the subensemble S for the product of a
deterministic function ( )l̂F x R and a directly fluctuating
function, say ( )tv x y K, , ;i z

ion ( )=i x y, will be calculated as

( ) ( )
( ) ( ) ( )

l t

l t

á ñ

= á ñ
^

^

F x R v x y K

F x R v x y K

, , ;

, , ; 40

i
S

S
i

S

z
ion

z
ion

where the average ( )tá ñv x y K, , ;i
S

z
ion is performed using the

DCT tools. In our case we need for the subensemble averaged

Figure 2.Trajectories and hodographs for =K 1s
ion , and four values of the level of turbulence in the subensemble given by j = =v2, 1x

0 0

and =v 1y
0 .

Figure 3. Trajectories and hodographs for =K 5s
ion , and four values of the level of turbulence in the subensemble given by j = =v2, 1x

0 0

and =v 1y
0 .
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expressions of the following terms
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Using the equations (34), (35), (36), (40), (41) and (42) the
terms are calculated as
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The solution of deterministic system (37), (38) depends
not only on the parameters that define the subensemble S i.e.
[ ( ) ( ) ]j j= =0 v 0 v, 0 , , 00 0 but also on the Kubo numbers
defined in equations (7), (8), (10).

Figure 4. Trajectories in the subensemble given by j = =v2, 1x
0 0 and =v 1y

0 . In all subplots =K 0.5s
ion and = -K 10z

ion 3 (top left),
10−2 (top right), 10−1 (bottom left), 1 (bottom right). Different values for the electrostatic Kubo number were used.
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The Lagrangian correlation tensor components are

{ }
( ) ( )
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- + +

-L v v

v v L

2 d d d
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S

0 0 0

0 2 0 2 0 2

3
2

and contribute to the calculation of the running diffusion
tensor components as

( ) ( ) ( )òt q q=
t

D L d . 46ij ij
0

For K 1z
ion , i.e. 

+
KK

K 1z
ion the diffusion coefficient is

influenced directly only by K2 and implicitly by Ks
ion. For

K 1z
ion the diffusion coefficient is influenced directly by

( )+
K

K 1

2

z
ion and implicitly by Kzs

ion.

4. DCT trajectories

In this section we present some trajectories and hodographs
resulting from system (37), (38), for a subensemble defined as

( ) ( )j j= = = =S v v0 0: , 0 2, , 0 1x x
0 0 and ( ) =v 0, 0y

=v 1y
0 and for different values of Kion and Ks

ion ( )K 1z
ion .

In figures 1–3 we visualized trajectories and hodographs for the
set of electrostatic Kubo numbers [ ]0.2, 0.5, 1, 5 for different
values of the shear Kubo number =K 0.5s

ion (figure 1),
=K 1s

ion (figure 2) and =K 5s
ion (figure 3). The shape is

influenced by the electrostatic Kubo number only for a relatively
high value of the level of turbulence as shown in the figures. For
relatively small values [ ]=K 0.5, 1ion of the level of turbulence,
the shapes are almost the same except for the high value
[ ]=K 5ion (see figures 1–3).

All these quantities are calculated for different values of
the electrostatic Kubo number º

+
K K

K
ion

1z
ion defined above

Figure 5. Diffusion coefficients and averaged velocities for Kion=0.2 and { }ÎK 0.1, 1, 2, 5s
ion .
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in expression (28) and of the shear Kubo number

º
+

K K

Kzs
ion

1
s
ion

z
ion defined in expression (29); the aforementioned

Kubo numbers depend on [ ]


= Ît
l

-K 10 , 1V
z
ion 2th

ion
c . The

value = -K 10z
ion 3 was used in order to investigate the

influence of this order of magnitude on the trajectory shape:
this is not important as we can see from figure 4.

We have used in our calculations the electrostatic Kubo
numbers

{ }ÎK 0.2, 1, 5, 10 .ion

For each value of the electrostatic Kubo number we have
considered the evolution of the quantities for different values
of the shear Kubo numbers

{ }ÎK 0.1, 1, 2, 5 .s
ion

Figure 4 presents the trajectories for a given subensemble,
four fixed values for the electrostatic Kubo number Kion , a

fixed value of the shear Kubo number =K 0.5s
ion and dif-

ferent values of the parameter Kz
ion: in the top left subplot

= -K 10z
ion 3, in the top right subplot = -K 10z

ion 2, in the
bottom left subplot = -K 10z

ion 1 and in the bottom right
subplot =K 1.z

ion The trajectories are closed for Kion=5 and
open in all the other cases, i.e. 0.2, 0.5, and 1 if <K 1z

ion . For
=K 1z

ion the trajectories corresponding to Kion=5 are also
open, so trapping is not present in this case.

4.1. Comments on Kubo numbers and trapping versus open
trajectories

In the subensemble defined as ( ) ( )j j= = =S v0 0: , 0 2, , 0x
0

=v 1x
0 and ( ) = =v v0, 0 1y y

0 the shapes of the trajectories
represented in figures 1–4 are influenced by the parameters
already mentioned before.

Trapping (or the existence of closed trajectories) is pre-
sent when particles are moving near the maxima or minima of

Figure 6. Diffusion coefficients and averaged velocities for Kion=0.5 and { }ÎK 0.1, 1, 2, 5s
ion .
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the stochastic electrostatic potential, and is influenced by
dimensionless quantities called Kubo numbers. In our paper
there are several Kubo numbers defined in (7)–(10), (12) and
(13) in the particular case of ions. The electrostatic Kubo
number defined in (7) measures the stochastic character of the
electrostatic field and represents the ratio between the distance
Vthτc covered by a particle moving with the velocity Vth

during the correlation time τc and the perpendicular correla-
tion length λ⊥,

t
l

et
l

t
t

= º º
^ ^

K
V

B
th c c

0
2

c

fl

where ( )t =
l

-

^

V
fl

1
th is the time of flight, i.e. the time necessary

for the particle to cover a distance of the order of magnitude
of the correlation length. Similar definitions for Kubo num-
bers are given in expressions (8) (where in Ks the interchange

⟺l̂ Ls is obvious) and (10) (where in Kz the interchange

⟺ l l^ is made). In (9) where Kzs is defined, the interchange
⟺ l l^ L2

s is made. In figure 4 the influence of Kz
ion on the

shape of trajectories is featured. The trajectories are closed
(trapping) only for Kion=5. Two closures are observed for
Kion=5, =K 0.5s

ion and for two values = -K 10z
ion 3 and

10−2. If Kz
ion increases the trajectories become open (see the

case where =K 1z
ion ). For a fixed parallel correlation length,

the variation of the thermal velocity modifies the parallel time

of flight ( )


t =
l

-
V

fl

1
th : the greater the thermal velocity, the

shorter the time of flight is and the fewer open trajectories are
present.

5. Diffusion coefficients

In this section we present in figures 5–9 the behavior of the
running poloidal and radial diffusion coefficients (Dyy, Dxx)

Figure 7. Diffusion coefficients and averaged velocities for =K 1
ion

and { }ÎK 0.1, 1, 2, 5s
ion

.
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and the averaged directly fluctuating velocities over the sub-
ensembles, i.e. ( ( ) )t tá ñv x ,k

S S, k=x, y. In figures 5–9 the
following labels are used for the radial running diffusion
coefficients: =K 0.1s

ion (continuous red line), =K 1s
ion

(continuous dotted red line), =K 2s
ion (dotted red line) and

=K 5s
ion (continuous red x line) and the same labels in blue

for the poloidal running diffusion coefficients. For Kion=0.2
the smallest asymptotic value (≈0.6) of the radial diffusion
coefficient Dxx is obtained for the greater value of the shear
Kubo number, i.e. =K 5;s

ion the same behavior is obtained
for the poloidal diffusion coefficient Dyy but the asymptotic
value is different (≈0.75) (see figure 5). The averaged directly
fluctuating velocities ( ( ) )t tá ñv x ,k

S S are represented also in
figure 5; the poloidal one is positive for t"  0 but the radial
one is negative for =K 5s

ion and positive for the other values
of Ks

ion for the entire time interval [ ]t Î 0, 4 . The asymptotic
(i.e. for τ�4) values of the averaged velocities are all zero.

Practically the same behavior is present for Kion=0.5 but
with other values for the asymptotic diffusion coefficients (see
figure 6). For Kion=1, the smallest asymptotic value (≈0.25)
for the radial diffusion coefficient Dxx is obtained for the
greater value of the shear Kubo number, i.e. =K 5;s

ion the
same behavior is obtained for the poloidal diffusion coeffi-
cient Dyy but the asymptotic value is different (≈0.5) (see
figure 7).

The averaged directly fluctuating velocities ( ( ) )t tá ñv x ,k
S S

also represented in figure 7 are positives for t"  0 except for
the radial one, which is negative for =K 5s

ion in the interval
[ ]t Î 1, 2 . The asymptotic values are all zero.
For Kion=5 the asymptotic radial diffusion coefficient

values are diminished and they belong to the interval
[ ]0.06, 0.075 , but the small one is obtained for =K 0.1s

ion

(see figure 8). For an increased value of the electrostatic Kubo
number (Kion=10) an inversion of the behavior of the

Figure 8. Diffusion coefficients and averaged velocities for Kion=5 and { }ÎK 0.1, 1, 2, 5s
ion .
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diffusion coefficients is observed (see figure 9); a decreasing
of the maximum of the radial diffusion coefficient is also
observed. The dimensional expressions for the radial and
poloidal diffusion coefficients are

( )


l
l

= =^D D
V

cD 47XX xx xx
th

2

and

( )


l
l

= =^D D
V

cD 48YY yy yy
th

2

respectively. If we consider λP;1 m, l̂ -10 m2 and
V 10th

5 m s−1 the dimensional factor c is about

= -c 10 m s .2 1

The expressions of DXX and DYY can be defined also as

functions of


= t
l

K V
z
ion th

ion
c as

( ) ( )


l
l

t l= º^ -
^D D

V
K D 49XX xx xx

th
2

z
ion

c
1 2

and

( ) ( )


l
l

t l= º^ -
^D D

V
K D 50YY yy yy

th
2

z
ion

c
1 2

where we remember that the correlation time is about
t -10c

5 s. As a consequence,

( )

( ) ( )





l
l

t l

l
l

t l

= º =

= º =

^ -
^

^ -
^

D D
V

K D K D

D D
V

K D K D

10

10 . 51

XX xx xx xx

YY yy yy yy

th
2

z
ion

c
1 2

z
ion

th
2

z
ion

c
1 2

z
ion

Figure 9. Diffusion coefficients and averaged velocities for =K 10
ion

and { }ÎK 0.1, 1, 2, 5s
ion

.
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In conclusion, varying Kz
ion we obtain the corresponding

maxima and minima for Dii (i=X, Y)

( )
( ) ( )

= =

= =

D D K

D D K

10 , 1

10 , 1 52

XX xx

YY yy

max
z
ion

max
z
ion

and

( )
( ) ( )

= =

= =

- -

- -

D D K

D D K

10 , 10

10 , 10 . 53

XX xx

YY yy

min 1
z
ion 2

min 1
z
ion 2

Using the above relations and the results shown in the
corresponding figures, we can state some observations. As
stated in [33] for example, the neoclassical values for the
diffusion coefficients are smaller than unity; e.g. they are of
the order of 0.5 -m s2 1, whereas in experiments they are much
larger, with anomalous values that are found to be of the order
of 4 -m s2 1.

For Kion=10 (see figure 9) the radial diffusion coeffi-
cient ( )DXX

max is in the range of the neoclassical values, i.e.
( ) D 0.7XX

max m2 s−1 for practically all values of Ks
ion. The

same situation appears for ( ) D 0.6YY
max -m s2 1 for practi-

cally all values of Ks
ion. For the asymptotic values of the radial

diffusion coefficients the situation is the following: ( )DXX
as is

in the range [ ]0.15, 0.35 , and increases if Ks
ion increases to the

range [ ]0.1, 5 . ( )DXX
as is about 0.6 -m s2 1 practically for all

Ks
ion. ( )DYY

as is in the range [ ]0.2, 1.2 and increases if Ks
ion

increases to the range [ ]0.1, 5 .
For Kion=5 (see figure 8), =K 0.1s

ion and 1, the radial
diffusion coefficient has the maxima values ( ) DXX

max

1.4 m2 s−1 for =K 1z
ion and 0.014 for = -K 10z

ion 2. ( )DYY
as is

in the range [ ]0.75, 2 and increases if Ks
ion increases to the

range [ ]0.1, 5 . In figures 10–12 the labels used are as follows:
Kion=0.2 (red diamond), Kion=0.5 (red squared), Kion=
1 (red triangle), Kion=5 (blue circle) and Kion=10 (blue x).
We have calculated the influence of Ks

ion on the radial and
poloidal asymptotic diffusion coefficients for different levels
of the electrostatic turbulence (see figure 10). It is obvious
that an increase of the shear Kubo number produces a

Figure 10. Radial and poloidal asymptotic diffusion coefficients as a
function of Ks

ion for different values of the level of electrostatic
turbulence given by Kion.

Figure 11. The moments corresponding to the achievements of
maxima for the radial and poloidal diffusion coefficients as a
function of Ks

ion
for different values of K

ion
.
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decrease of the asymptotic values for the radial and poloidal
diffusion coefficients except for the level of electrostatic
turbulence given here by = =K K5, 10;ion ion the asymp-
totic values increase slowly as a function of Ks

ion but the final
values are smaller than those corresponding to Kion<5. In
figure 11 the moments tmax corresponding to the maxima
achievements are represented as a function of Ks

ion for dif-
ferent Kion. For the radial diffusion coefficients (top of
figure 11) the shapes are very similar to a hyperbolic decrease
as a function of Ks

ion. The following order is obvious

( ) ( ) ( ) ( ) ( ) ( )t t t t t> > > > . 54max 0.2 max 0.5 max 1 max 5 max 10

The smallest value is ( )tmax 10 and corresponds to Kion=10.
For the poloidal diffusion we represented in (bottom of
figure 11) tmax only for = =K K5, 10ion ion . There are
constant values for these moments; only their order of mag-
nitude is different. We have also calculated the influence of
Ks

ion on the trapping time interval, i.e. on t t t= -tr as max,
where τas is the moment corresponding to the beginning of
the asymptotic regime and tmax is the moment that corre-
sponds to the maxima of the diffusion coefficients (see
figure 12). We note that if trapping is present the diffusion
coefficient shape begins with an increase (the ballistic regime)
and continues with a subdiffusion regime up to a value

corresponding to the beginning of the asymptotic regime. For
the radial diffusion coefficient, we conclude that the trapping
time t xx

tr increases for K 2s
ion for { }ÎK 0.2, 0.5, 1ion and

has relatively constant values for { }ÎK 5, 10ion also for
K 2s

ion . For K 2s
ion a relatively small region with a

decrease of the time trapping is present for Kion=5 followed
by a decrease and an increase followed by a constant regime
for Kion=10. For Kion=0.2 and 1 there exists a small
increase, and for Kion=0.5 a decrease is present. For the
poloidal diffusion coefficient the shape of the trapping time
t yy

tr represented in figure 12 only for a relatively large tur-
bulence level is practically the same as for the corresponding
radial situation.

6. Conclusions

In this paper, we have analyzed the diffusion of the ions using
the Langevin equations corresponding to the guiding center
and we applied the semi-analytical method of decorrelation
trajectories (DCT). The latter can be considered as a gen-
eralization of the Corrsin approximation and takes into
account the trapping effects (which necessarily exist in rela-
tively strong turbulent plasmas). Using DCT, we have studied
the transport of test particles (ions) by the electromagnetic
drift that is produced by a stochastic electrostatic potential and
by an inhomogeneous and sheared magnetic field. The DCT
and the model used have given good qualitative results con-
cerning the diffusion of ions. The radial and poloidal coeffi-
cients start with a linear part, indicating a ballistic regime,
which is followed by a trapping regime. If trapping is present
the diffusion coefficient has a shape that begins with an
increase of the diffusion coefficient (the ballistic regime) and
continues with a subdiffusion regime up to a value corresp-
onding to the beginning of the asymptotic regime. We have
calculated the influence of Ks

ion on the radial and poloidal
trapping time intervals for different values of Kion. After that
the asymptotic value is reached (the trapping effects are
visible in representations of trajectories). The diffusion
coefficients increase with increasing levels of turbulence, i.e.
with an increasing Kion. We have also represented the
dependence of tmax as a function of Ks

ion and the trapping time
interval as a function of Ks

ion for different levels of electro-
static turbulence. The maximum radial trapping time is
reached for Kion=0.5 for =K 2s

ion . The value =K 2s
ion

represents a critical value to which a corresponding critical
value for the thermal ion velocity is obtained. For fixed values
of the shear length and of the correlation time this critical
value can be obtained. For Ls=10 m, t = -10 sc

5 , the cri-
tical thermal velocity is ( ) = ´V 2 10th

cr 6 m s−1. The results
obtained in our model are in agreement with the experimental
data: the neoclassical and anomalous values for the diffusion
coefficients are obtained. Here the magnetic field model
dependence on the radial coordinate and the electrostatic
stochastic field influenced the values of the diffusion coeffi-
cients. Concerning the diffusion coefficients, similar results
with those obtained in the present paper were found in [30].
The conclusion is that from these two different physical

Figure 12. Radial and poloidal trapping time as a function of Ks
ion for

different values of the level of electrostatic turbulence given by Kion.
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models we obtained practically the same diffusion coefficient
behavior. The magnetic shear, the inhomogeneity of the
magnetic field and also the stochastic electrostatic field have
the same influence on the ions’ diffusion as has the stochastic
magnetic drift.

In conclusion, we state that

(a) the diffusion present a pronounced trapping if Kion�5;
(b) the maxima of the diffusion coefficients decreases if

Kion �5;
(c) the space dependence and the shearof the magnetic

field modifies the diffusion coefficients.

Important results concerning the behavior of the magnetic
field were obtained (see e.g. [34] and [35]) analyzing the Grad–
Shafranov equation. From here, the possibility of constructing
different magnetic fields appears. The diffusion of stochastic
isotropic and anisotropic magnetic field lines in turbulence with
a magnetic average poloidal magnetic field component was
studied in [36] and an extension of this paper in such a magnetic
field would be of interest. It will be necessary that collisions are
taken into consideration in such a study, but this issue is left for
future work. Here, only the influence of the aforementioned
parameters on motion were taken into account.
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