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Abstract
Coal is a crucial fossil energy in today’s society, and the detection of sulfur (S) and nitrogen (N)
in coal is essential for the evaluation of coal quality. Therefore, an efficient method is needed to
quantitatively analyze N and S content in coal, to achieve the purpose of clean utilization of coal. This
study applied laser-induced breakdown spectroscopy (LIBS) to test coal quality, and combined two
variable selection algorithms, competitive adaptive reweighted sampling (CARS) and the successive
projections algorithm (SPA), to establish the corresponding partial least square (PLS) model. The
results of the experiment were as follows. The PLS modeled with the full spectrum of 27,620 variables
has poor accuracy, the coefficient of determination of the test set (R°P) and root mean square error
of the test set (RMSEP) of nitrogen were 0.5172 and 0.2263, respectively, and those of sulfur were
0.5784 and 0.5811, respectively. The CARS-PLS screened 37 and 25 variables respectively in the
detection of N and S elements, but the prediction ability of the model did not improve significantly.
SPA-PLS finally screened 14 and 11 variables respectively through successive projections, and
obtained the best prediction effect among the three methods. The R*P and RMSEP of nitrogen were
0.9873 and 0.0208, respectively, and those of sulfur were 0.9451 and 0.2082, respectively. In general,
the predictive results of the two elements increased by about 90% for RMSEP and 60% for R°P
compared with PLS. The results show that LIBS combined with SPA-PLS has good potential for
detecting N and S content in coal, and is a very promising technology for industrial application.

Keywords: variable selection, LIBS, coal, CARS and SPA

(Some figures may appear in colour only in the online journal)

1. Introduction and other processes, and is called ‘the black gold’. It not only
provides electricity for human society, but also provides basic
As one of the most important fossil energies in the world, coal energy for other industrial activities such as refining metals
plays an vital role in industrial development, energy supply, and making cement. However, in the long-term process of
coal burning, the emission of various air pollutants and
4 Author to whom any correspondence should be addressed. greenhouse gases such as NO, and SO, causes a series of
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Figure 1. LIBS setup.

environmental pollution problems [1-4]. NO, causes the
imbalance of respiratory systems, while SO, not only causes
acid rain, but also significant damage to the human body
when the concentration in the air is too high. Since these
polluting gases are mainly formed by the elements of nitrogen
(N) and sulfur (S) in coal, the accurate determination of N and
S content is an important step to realize the clean use of coal.
However, the traditional coal quality detection method cannot
be used for online detection, while the current online analysis
methods based on capacitance [5], core [6, 7] and ultrasonic
wave have some limitations, such as expensive equipment
and significant radiation harm.

Laser-induced breakdown spectroscopy (LIBS) is a
rapidly developed chemical element analysis technology
[8, 9], which has been widely used in the alloy industry [10],
biology [11], archaeology [12], slag detection [13], and the
analysis of soil [14]. As a fast, online, pollution-free, low-cost
technology [15, 16], LIBS is well suited for ultimate and
proximate analysis of coal [17, 18]. Zhou et al applied LIBS
technology to the detection of zinc in coal ash, and aligned
the elemental spectrum of pure elements with the samples’
spectrum to identify and confirm the samples. The R* of zinc
in coal ash was determined to be 0.9957 [19]. Zhao et al
proposed a new hybrid quantitative model, which can provide
reproducible quantitative analytical results. The model
obtained the average absolute errors of 0.42%, 0.05%, 0.07%,
and 0.17% for carbon, hydrogen, volatiles, and ash, respec-
tively [20]. However, little attention has been paid to the
detection of N in coal in present research. Furthermore, the
aforementioned research ignored the influence of variable
selection in coal detection. Since the spectrum obtained by
LIBS contains interference information, this will undoubtedly
affect the accuracy of the quantitative detection results. Yan
et al chose to use a combination of PLS algorithm and other
related algorithms in the detection of coal calorific value [21],

C and S elements [22], as well as the measurement of ash
content, volatile matter and other indicators [23] to make a
preliminary variable selection of the spectrum. Their exper-
imental results showed that the quantitative analysis results
after variable selection are significantly better than full-
spectrum modeling, but the team only conducted simple
variable selection, and did not discuss the multiple variable
selection methods in depth. In order to overcome the impact
of redundant spectral information on quantitative analysis,
comparing and selecting a fast and efficient variable selection
algorithm is the primary task.

The current study set up an experimental device based on
LIBS to quantitatively detect N and S in coal. Meanwhile, the
PLS model combined with variable selection methods
(competitive adaptive reweighted sampling (CARS) and the
successive projections algorithm (SPA)) were constructed to
explore their effect on improving the performance of quan-
titative analysis. Finally, the suitable variable selection algo-
rithm was selected to improve the ability of LIBS technology
for coal quality detection and analysis. In our study, we
applied the coefficients of determination of calibration sets
and test sets (RZC and RZP), root mean square error of cali-
bration sets and test sets (RMSEC and RMSEP) to evaluate
the model.

2. Material and methods

2.1. Setup

All the spectra of coal samples were induced by a Q-Switched
Nd:YAG laser (Dawa-300, Beamtech) which operated at the
wavelength of 1064 nm [24]. The pulse width of the laser is
about 8 ns and the chosen energy is 80 mJ. The laser fires at
the frequency of 10 Hz. All coal samples are placed directly
on the three-dimensional stage with millimeter accuracy. The
laser pulse is focused onto the sample surface by a 50 mm
lens, then ablates the sample and produces a spot with a
diameter of 200 pm. The plasma emission is coupled into the
optical fiber through a collimating lens (UV74) with a focal
length of 7 mm. The plasma is transmitted to an Echelle
spectrometer (Aryelle 150, LTB, Germany, A/AX = 6000,
wavelength: 220-720 nm). An electronic multiplying charge
coupled device camera (1004-1002 Pixels, UV enhanced,
QImaging, USA) is coupled to the spectrometer for detection
of the spectrum from samples. In order to not collect early
continuous radiation of LIBS plasma, a mechanical chopper is
used for time control of the laser and spectrometer. The delay
time between the laser and spectrometer is set to 3 us. The
integrating time is 2 ms. For the coal sample, 30 different
locations were chosen in the same sample for spectrum
acquisitions. The spectrum obtained from the same position is
an average spectrum obtained by averaging ten laser pulses.
All the experiments were conducted at atmospheric pressure.
A diagram of the LIBS setup is shown in figure 1.
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Table 1. Content of total samples. can be shown as:
CRM-No. S (%) N (%) CRM-No. S (%) N (%) |bil _
i:])—lb"lzl’z’ 3,...,[). (1)

ZBM091 193 114  ZBMI107 154  1.19 i1l
ZBM092 385 088  ZBMIO8 058  1.03 o . ,
7ZBM094 0.19 0.58 7ZBM109 0.45 0.87 When it is the ith sampling run, the ratio can be defined as:
ZBMO095 0.35 1.26 ZBM112 1.24 1.01 ro—m X eNt )
ZBMO096 0.4 1.31 ZBMI114  0.27 1.02 ! )
ZBMO098 1.7 1.32 ZBMI21A 05 1.21 Here e is the prediction error, and r; is the ratio of the
ZBM099 0.66 1.02 ZBM122 1.3 1.24 wavelength to be kept in the ith sampling run. m and n are two
égﬁigg ;g 06688 %giﬁgg 02.857 1(1); constants, which are determined by two conditions as follows:
ZBMI04 435 0.81 ZBMYTA 103 L2 (1) in the first sampling run, the model is built with all the

2.2. Coal samples

There are 20 standard samples of pulverized coal from Jinan
Zhongbiao Technologies Co. Ltd in this study. The content of
N and S in the samples are listed in table 1. Because the
inhomogeneity of the samples may affect the accuracy and
precision of the experimental results, all powder samples were
compressed into dense and smooth pellets for LIBS analysis.
The pellets, with a diameter of 20 mm and thickness of 3 mm,
were prepared by a 28 MPa tablet press for 5 min. For
modeling, 20 samples were divided randomly into a calibra-
tion set and test set. In the N-element detection experiment,
the test set includes samples 103, 92, 114, 97 A, 107 and 95.
The rest comprise the calibration set. In the S-element
detection experiment, samples 95, 121a, 130, 122, 98 and 103
are the test set, and the remaining samples are the calibration
set. The data processing and quantitative analysis were
completed using MATLAB (R2014b).

2.3. Competitive adaptive reweighted sampling (CARS)

CARS is an algorithm which can select the optimized com-
bination of wavelengths from the full spectrum, connected
with the PLS model on the foundation of ‘survival of the
fittest’. CARS is a potentially effective method to select
wavelength in order to build an accurate model.

CARS regression uses Monte Carlo simulations to select
some sets of spectral variables. In each sampling, two steps
need to be performed. In the first step, wavelengths, of which
the absolute value regression coefficients in PLS are relatively
small, are removed by the exponentially decreasing function
(EDF). The ratio of the variables to be maintained is also
calculated by the exponentially decreasing function [25].

The contribution of each wavelength can be reflected
by the absolute value of the ith element in b, which is the
p-dimensional coefficient vector, where the p is the number of
variables. Thus, it can be easily known that the larger |b,| has
the more important function, and contributes more to our
study. To assess the significance of each wavelength point,
we use w;, which is the absolute value of the regression
coefficient in the PLS model, to express it, and the definition

wavelengths of PLS; (2) in the Nth sampling run, we get ry =
2/p with only two wavelengths reserved. With these two
conditions, m and n can be expressed by two formulas, as

follows:
1I/(N=1)
14
p— — 3
" (2) ©)
, = n@/2) @)
N-—-1

We then use adaptive reweighted sampling (ARS) in order to
further select variables [26]. In the next step, the best variable
subset, of which the RMSE is the lowest, was selected by k-fold
crossing validation. Due to the use of Monte Carlo sampling and
the random number of ARS, the result of CARS is not unique.

2.4. Successive projections algorithm (SPA)

SPA is a forward variable selection algorithm. It can find the
variable group with the least amount of redundant information
and the lowest collinearity among the full spectrum. The
selected group may reduce the fitting complexity in the pro-
cess of modeling and improve the speed and efficiency of
modeling. At the same time, it can effectively extract spectral
variables with high correlation, and increase the stability and
accuracy of the regression model.

SPA starts the projection with a random variable, then
incorporates a new one at each iteration, until a specified
number S of variables is reached [27]. The steps for SPA are
described below, assuming that the first wavelength & (0) and
the number S are given.

(1) Before the first iteration (s = 1), let x; = ith column of
Xea; 1=1,...,1, where I is the total number of
wavelengths. X, is the calibration set.

(2) Suppose M is the variable set which is not yet

selected. M= {i such that 1<i<I and
i€ {kQ),...k(s — D}v}.
(3) Calculate the projection of x; as Px;=x—

(xiTxk(s,l))xk(s,l) (X]Z-(S,I)xk(sfl))_l for alli € M, where
P is the projection operator. The superscript 7 means
transposed.

(4) Let k(s) = arg(max ||Px;||, j € M).

(5) Let x; = Px;,i € M.

(6) Lets =5 + 1. If s < S, go back to step 2.

(7) The resulting wavelengths are {k(s); s =0, ..., 5§ — 1}.
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Figure 2. Typical spectrum of coal samples.
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litative analysis of N and S elements in coal. Figure 2 shows 1
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C, N and S in figure 2. Since the spectral intensity and g 08
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PLS model for analyzing the content of N and S. In the PLS 1 ()
model, the latent variable (LV) is an important parameter 3.5+ -
affecting the perdition performance. RMSEs of cross valida- -
tion were used to optimize the LV. After ten-fold cross §
validation, the LV of six was selected as the best LV for both % 2'5‘_
N and S. With this optimized PLS model, the predictive % 204
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respectively. This may be because the full spectrum contains W77 T T T T
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an element of useless information contributing to quantitative
analysis and it is difficult to find variables corresponding to
the real content in the algorithm.

3.3. Quantitative analysis using CARS-PLS model

In order to remove irrelevant information that influences the
result of the PLS model, CARS was used to explore the
feasibility of variable selection.

The number of Monte Carlo sampling runs affects the
algorithm runtime and the selected variables. For this

Measured Value

Figure 3. Prediction results using PLS model for N (a) and S (b).

research, 50 runs of Monte Carlo sampling are set for both N
and S. As shown in figure 4(a), with the increase of runs of
Monte Carlo sampling, the quantity of selected variables
decreases at different speeds. At the beginning, the speed of
decrease is rapid. Around the 5th Monte Carlo sampling, the
decreasing speed slows. This process is shown in figure 4(a).
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Figure 6. Predictive results of the CARS-PLS model for the test set.
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1.04 trend at the beginning, and then show an upward trend. So the
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04+ 8 With the optimized parameters, we build two models
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] ’\o~o\‘_.__./0—"—'—0—.”" shown in figure 6. For the N element, we can see that the R*P
00 y ‘ — ’ —— r . is 0.5414, and the RMSEP is 0.2289. For the S element, the
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Figure 5. RMSECVs for different LVs.

As 50 different subsets were selected through Monte
Carlo sampling, cross validation was used to calculate the
RMSE for cross validation (RMSECV) for each subset, as
shown in figure 4(b). The RMSECVs show a downward trend
with the increase in the number of runs of Monte Carlo
sampling. When the number of runs reaches 35, the
RMSECYV obtains the minimum value and the number of the
selected variable is 37. This means that before the 35th Monte
Carlo sampling, more and more variables which have low
correlation with the content of N in coal were eliminated.
When the number of runs is above 35, the RMSECVs show a
rise in volatility. In this procedure, the number of the selected
variable is relatively very small (<37), and each selected
variable may have a large contribution to the quantitative
model. In this condition, the RMSECVs vibrate significantly
when the sampling result changes a little. After CARS, 37
variables were chosen to be the input of the PLS model for the
determination of N. Through the same process, the number of
the selected variable was 25 for S at the 37th sampling.

R?P is 0.9101, and the RMSEP is 0.9314.

3.4. Quantitative analysis using SPA-PLS model

SPA was applied to the full spectrum of coal samples and 14
subsets were selected based on projections for both N and S,
respectively. After filtering the error and correlation of each
subset, the minimum subset of RMSE after cross validation is
finally selected as the result of variable selection. For S, it is
found that the number of variables corresponding to the
subset with the smallest error value is 13. Using these 13
variables, the PLS model was built to evaluate the predictive
performance for the combination of different variables. Due
to the fact that these 13 variables had been sorted by corre-
lation and projection value, the number of variables used for
modeling increases in order. The RMSECVs are shown in
figure 7. The first 11 variables among the subset obtained the
best RMSECV; the numbers of these selected variables were
97, 12, 4320, 12734, 759, 2978, 587, 63, 4843, 2094, 228.
For N the whole 14 variables in the selected subset are chosen
with the lowest RMSECYV; their numbers are 488, 12, 2029,
853, 486, 5370, 32, 350, 214, 374, 723, 793, 16754, 54.
The selected variables through SPA were used to build the
PLS model with the LVs of 10 and 9 for N and S, respectively.
SPA-PLS models of the two elements are established under the
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Figure 8. Predictive performance of N and S using SPA-PLS.

condition of the best LVs, and the prediction results are shown
in figure 8. For both N and S, SPA-PLS obtained relatively
good correlation between the content and the selected variables
as the result of R°P = 0.9873 for N and R°P = 0.9451 for S.
Compared to S, the SPA-PLS model for N has better perfor-
mance with higher RMSEP and lower R*P. This may be
because the concentration distribution of S is more discrete in
the samples than N.

3.5. Comparison of PLS, CARS-PLS and SPA-PLS

The performances of three models are listed in table 2. Two
kinds of methods, CARS and SPA, were explored in this
research, to validate the influences of variable selection on
predictive results. As can be seen from table 2, the PLS model
with the full spectrum uses 27620 variables to construct the
model for quantitative analysis. However, the predictive

Table 2. The comparison of predictive performance of different

models.
Element Method R’P RMSEP  Number of variables
N PLS 0.5172 0.2263 27620
CARS-PLS 0.5414  0.2289 37
SPA-PLS  0.9873  0.0208 14
S PLS 0.5784  0.5811 27620
CARS-PLS 09101 09314 25
SPA-PLS  0.9451 0.2082 11

performance for the PLS model is not satisfied for neither N
nor S. N and S are not the main elements in coal samples, so
their characteristic lines are easily affected by other lines.

CARS uses the Monte Carlo sampling combined with
ARS to select a wavelength from the full spectrum. Although
CARS-PLS eliminates most variables and improves the
modeling efficiency, the prediction performance is not
improved significantly. Besides this, CARS-PLS has larger
RMSERP for S compared to the PLS model. The RMSEP for S
raises from 0.5811 to 0.9314.

SPA-PLS obtains the best results among these three
models. The SPA algorithm selects 14 variables and 11
variables for N and S respectively through successive pro-
jection. The number of selected variables accounts for only
about 0.05% of the total number of variables. SPA realized
good promotion in R*P and RMSEP with respect to PLS.
Their promotion ratios are 90.9% (R*P from 0.5172 to
0.9873) for N, 90.8% (RMSEP from 0.2263 to 0. 0208) for N,
63.4% (R*P from 0.5784 to 0.9451) for S and 64.2%
(RMSEP from 0.5811 to 0.2082) for S, respectively. All the
variables selected by CARS and SPA are tagged in figure 9.

From the above experimental results, it can be seen that
the selection of variables greatly reduces the modeling time
and improves the modeling accuracy. For the variable selec-
tion, the CARS algorithm is not stable due to the use of
Monte Carlo sampling and the random number of ARS. It
cannot therefore maintain effective wavelengths securely.
Although it can simplify the model, the chosen variables may
have small signal-to-noise ratio, which affects the model
prediction accuracy. Meanwhile, the SPA algorithm is only
used to select variables and does not modify the original
spectral data, so the relationship between the spectral data and
the chemical properties of the sample is preserved. Before
performing wavelength selection, SPA standardizes the vari-
ables so that the modulus of the vectors at each wavelength
point is the same. Therefore, the process of selecting the
maximum projection vector when performing projection is
the process of selecting mutually orthogonal vectors. The co-
linearity between the variables is minimized, so the prediction
performance of SPA-PLS has better performance than PLS.

Based on these experimental results, the variables
selected by SPA contain most of the information corresp-
onding to the content of N and S.
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Figure 9. Selected lines of N and S by CARS and SPA.

4. Conclusion

In this paper, PLS, CARS-PLS and SPA-PLS are used to
predict the content of N and S in coal, and the characteristic
wavelengths are selected in the process of modeling. The
experimental results show that PLS cannot effectively predict
the concentration of N and S in coal due to its excessive
interference information in the full spectrum. For CARS-PLS,
although a large proportion of the wavelength points are
eliminated, only the prediction results of the S element are
improved; the prediction results of the N element do not differ
much from those of PLS. SPA-PLS keeps more spectral
information on the basis of eliminating the interference

information; the prediction ability of its model has been
obviously improved, and the accuracy of the prediction
results is the best. The R*P and RMSEP of the predicted
results of the N element are 0.9873 and 0.0208 respectively,
and those of the predicted results of the test set of the S
element are 0.9451 and 0.2082, respectively. The predictive
results of the two elements are significantly increased com-
pared with the other two methods. In general, LIBS combined
with SPA can be applied to quantitative detection of N and S
in coal samples.

In the future, this method could be extended to the
detection of atmospheric pollution elements in coal, and other
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indicators in the fields of environmental protection and che-
mical analysis.
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