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Abstract
Turbulent transport resulting from drift waves, typically, the ion temperature gradient (ITG)
mode and trapped electron mode (TEM), is of great significance in magnetic confinement fusion.
It is also well known that turbulence simulation is a challenging issue in both the complex
physical model and huge CPU cost as well as long computation time. In this work, a credible
turbulence transport prediction model, extended fluid code (ExFC-NN), based on a neural
network (NN) approach is established using simulation data by performing an ExFC, in which
multi-scale multi-mode fluctuations, such as ITG and TEM turbulence are involved. Results
show that the characteristics of turbulent transport can be successfully predicted including the
type of dominant turbulence and the radial averaged fluxes under any set of local gradient
parameters. Furthermore, a global NN model can well reproduce the radial profiles of turbulence
perturbation intensities and fluxes much faster than existing codes. A large number of
comparative predictions show that the newly constructed NN model can realize rapid
experimental analysis and provide reference data for experimental parameter design in the future.

Keywords: neural network, plasma turbulence, transport properties, plasma simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

Experiments, simulations and theoretical studies in magnetic
confinement fusion have conclusively shown that plasma
confinement performance is mainly governed by turbulent
transport, which is caused by many types of plasma turbu-
lence, typically, micro-scale fluctuations, e.g. the ion temp-
erature gradient (ITG) mode and trapped electron mode
(TEM) in current fusion devices. Great progress has been
made in understanding the physical mechanism of the trans-
port phenomenon in tokamaks. Furthermore, many kinds of
Alfvénic waves, such as the toroidal Alfvénic eigenmode and
the energetic particle mode, and even multi-scale multi-mode
fluctuations may play an essential role in burning plasma
confinement in future fusion reactors like DEMO [1] and

ITER [2]. Note that understanding complex turbulent trans-
port highly relies on massive parallel simulation even though
some significant advances in fusion plasma turbulence the-
ories have been achieved based on gyrokinetic formalism.
The related codes have been widely developed to study the
properties of ITG and TEM [3] turbulence. In addition,
transport behavior in the experiments is analyzed [4]. Direct
numerical simulations have successfully provided tremendous
insight into the underlying transport physics, and they are
currently a powerful tool in transport study.

Although these first-principles-based models have suc-
cessfully described transport process in the core plasma under
some conditions, they are still computationally challenging,
that is, they are time-consuming, require intensive computa-
tion, have high CPU cost, etc. In particular, gyrokinetic
simulations hardly last up to the quasi-steady-state phase and
their numerical accuracy is usually low for edge plasmas [5].
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Except for the gyrokinetic approach, a fluid model is also
established to simulate turbulence transport including ion
and/or electron-scale physics. Generally, when kinetic elec-
tron is involved in the simulations, the calculation time is
greatly increased. Even if it is running on a high-performance
super-computer system, it still takes from several hours to
days to obtain valid results. Using such a simplified theor-
etical model, the speed of calculation could be significantly
increased and it has proved to be effective to a large extent in
the tokamak plasma core [6–9]. However, for turbulence
transport with a global effect, computation based on reduced
physical models is still rather time-consuming. On the other
hand, using well-known conventional empirical models and/
or confinement scaling laws [10], the physical properties
could be well understood with the easy implementation.
However, they were all limited to zero-dimensional system
analyses without radial profiles for plasma parameters.
Therefore, both fast and accurate prediction models on tur-
bulent transport are essential for the illustration and optim-
ization of current experimental operation scenarios as well as
for real-time operation control by performing fast integrated
modeling. They may further be applied to extrapolate prob-
able parametric regimes in future devices. Hence, the devel-
opment of new transport models and the improvement of
existing models are badly needed to illustrate the properties of
turbulence and provide consultations for the design of future
tokamak reactors.

To date, machine learning with a neural network (NN)
method has been applied in fusion plasma research, for
instance, nonlinear regression for energy confinement scaling
[11], database establishment of neoclassical transport [12],
rapid nonlinear determination of equilibria parameters [13],
reconstruction of electron temperature profile [14], charge-
exchange spectrum analysis on the JET device [15], classifi-
cation of disruption [16–18] and the onset of L-H transition
[19]. To analyze what physical mechanisms play roles in
energy confinement, several works have developed new
transport models, which have adopted NNs to predict the
distribution of electron and ion heat flux. In the work [20], a
database based on campaigns of DIII-D experiments from
2012 to 2013 was built. It has been found that the NN method
could well reproduce the experiment phenomenon within
most of the plasma radius or even across a broad range via
training and testing the NN model. The radial distributions of
the heat flux were smooth, which indicated that the solution
found by the NN model was a smooth function of the set of
local input parameters, although each of the radial positions
was simulated independently of the others. This numerical
method was effective and took only a few CPU-ms per data
set. Therefore, it was most suitable for further application of
scenario development and real-time plasma control. Through
further research, they developed two NN-based models to
predict the core turbulent transport process and reproduce the
pedestal structure [21]. It was verified that the NN method can
reproduce the output results of TGLF and EPED1, which are
theory-based models, by speeding up the calculation process.
Pathak et al revealed that it was effective to use machine
learning to make model-free predictions for arbitrary

spatiotemporal chaotic systems. The system was characterized
by a large spatiotemporal range and the dimensionality was
entirely derived from the evolution process of the system
itself [22–24]. A transport model established by Citrin et al
aimed to predict the turbulence transport in a tokamak core
with real-time capabilities. A multi-layer perceptual NN was
used in the study, which successfully predicted the transport
flux output by the original quasi-linear gyrokinetics codes,
while greatly shortening the calculation time. The 300 s ITER
discharge process within 10 s could be done with this model.
This kind of regression principle verification based on the
transport model proved the possibility of greatly expanding
the dimensionality and physical authenticity of the input
parameters in future training [25]. It can increase the calcul-
ation speed of plasma real-time control and integrated simu-
lation applications. Plassche et al proposed an ultra-fast NN
model, namely QLKNN, which had the ability to predict the
heat flux and particle flux [26]. QLKNN is a surrogate model
of QuaLiKiz, which is a quasi-linear gyrokinetic transport
model. The database used for NN training was calculated by
QuaLiKiz. Narita et al used a semi-empirical method to
estimate quasi-linear particle transport, and established a rapid
transport model that predicted the density peaking through a
NN method [27]. Based on the above work, it was found that
the NN model has the following advantages. On the one hand,
the numerical solution of the analytical formula is several
orders of magnitude faster than the calculation of the original
program. On the other hand, the calculation time required to
compile the database has nothing to do with the calculation
time spent in the tokamak simulation itself. At the same time,
it is proved that the NN model can contain more complete
numerical results than the current transport model, while
saving calculation cost.

This work proposes a NN model, known as the extended
fluid code neural network (ExFC-NN), that can predict the
physical properties of turbulent transport in real time with a
change of plasma parameters in tokamak plasmas. First, we
build databases based on the simulation results using the
ExFC. ExFC is a fluid-type turbulence transport code based
on the Landau-fluid model extending to cover the TEM
physics to study tokamak plasma multi-mode multi-scale
turbulence dynamics. At present, the code has been well
developed with multi-mode character including the large-
scale magnetohydrodynamic resistive tearing mode, ITG
mode, TEM and kinetic ballooning mode. The basic model
equation system of ExFC applied in this work aims to
describe the physical properties of turbulent transport,
including the types of dominant turbulence (including ITG,
TEM and coexisting ITG and TEM), radial averaged flux
(including particle flux G, ion heat flux Q ,i electron heat flux
Qe), radial distribution of perturbations (including ion temp-
erature T r ,i ( ) electron temperature T r ,e ( ) density n r( )) and
radial flux distribution (G r ,( ) Q r ,i ( ) Q re ( )). The databases are
built with these physical quantities and then employed to train
a multi-layer feed-forward NN. The NN inputs, which have
been standardized, are a set of global dimensionless plasma
parameters. Furthermore, the applications of the NN model
are extended to predict all the fluxes including both local and
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global effect and corresponding fluctuations. The well-trained
NN model shows sufficient ability to reproduce the same
simulation results, and can accurately obtain the physical
characteristics of tokamak turbulence at a computational cost
of only a small amount of CPU time.

The rest of this paper is organized as follows. In
section 2, the theoretical method of NN modeling is intro-
duced. Section 3 focuses on the prediction results, including
the main turbulence type, radial averaged flux, radial profiles
of fluxes as well as the corresponding perturbations in the
nonlinear phase. This further illustrates the effectiveness of
the transport model in predicting linear and nonlinear physical
processes. A summary and the outlook for future work are
provided in section 4.

2. Methods

Turbulent transport in magnetically confined fusion plasma is
one of the obstacles to realizing fusion energy. High-temp-
erature fusion plasma turbulence is characterized by multiple
perturbation modes (originating from different driven
mechanisms) with multi-scales (from macroscale, mesoscale
to micro-scale), etc. The highly nonlinear interaction and
complex magnetic configuration are a great challenge to
numerically simulating global turbulent transport, in which
solving the overall evolution of physical quantities with time
is usually required. Note that long-time global simulation
based on first-principle gyrokinetic theory, e.g. the so-called
full-f algorithm, while it is of high precision, is very chal-
lenging in terms of calculation method and economy.
Simulation based on an improved fluid model (such as the
Gyro-Landau-fluid model) is an alternative and available
choice. In this work, an improved Gyro-Landau-fluid model
governing the ITG mode with extension to cover the trapped
electron dynamics, described by the so-called Weiland model
[28, 29], is adopted to numerically simulate global turbulent
transport. Here, a set of five-field fluid equations is advanced
to describe the evolution of global electrostatic ITG and TEM
turbulence as follows:
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where Wn T v, , ,e e  and Ti are, respectively, plasma density,
electron temperature, vorticity, parallel ion velocity and ion
temperature. The definition and notation of all quantities as
well as the normalizations are conventional. The governing
equations can be solved by employing the initial value code
ExFC, which has been perfectly benchmarked linearly and
nonlinearly [30, 31]. Figure 1, the evolution of electron heat
flux Q ,e is displayed as an example here.

After solving a series of discrete physical quantities using
the ExFC, mathematical methods are considered to generate
the function of a certain physical quantity in analytical form
in order to quickly and accurately obtain the transport features
under any set of plasma parameters. Considering the form of
the function, it can generally be divided into two categories,
namely interpolation and fitting. Interpolation is a statistical
method to estimate an unknown value of the data point using
the known values of the data points around it. Curve fitting is
the process of constructing a curve or mathematical function
that provides the best match to a series of data points, possibly
subject to some constraints. One of the interpolation methods
commonly used is cubic spline interpolation. However, when
the input dimension increases, the amount of data required
increases sharply. Generally, the spline interpolation method
is only suitable for low-dimensional systems. Compared with
interpolation, the fitting approach is much more flexible.
Nevertheless, in this high-dimensional system, a common
shortcoming of ordinary fitting methods is the accuracy of
fitting. Hence, NN, essentially as a function fitting method,
has been widely developed. It is also regarded as an imple-
mentation of artificial intelligence. The forms of NNs are
diverse, such as recurrent NNs, convolutional NNs, etc. They
are all universally used in different fields, such as machine
learning and artificial intelligence [32–34]. The functional
form of the NN is quite flexible. Therefore, in theory, the NN

Figure 1. Time evolution of radial electron heat flux Qe with
=R L 1,n/ =R L 3,Te/ =R L 11.Ti/ Simulations are carried out

with the cyclone base case profile since the density profile is
= - D - Dn r n L r rexp tanhr n r0 0( ) { ( ) [( ) ]}/ / and the temperature

profiles are = - D - DT r T L r rexp tanhs s rs Ts rs0 0( ) { ( ) [( ) ]}/ / where
the label ‘s’ stands for electrons and ions.
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can be used to fit the functional form with any shape [35] and
a higher fitting accuracy can be achieved. Moreover, our goal
is to find an analytical formula that can quickly and reliably
reproduce the physical quantities output by the ExFC. In
summary, in this work, we choose the NN fitting method and
select the feed-forward approach with setting up multiple
layers with adjustable variables (including weights and bia-
ses) accompanied with general approximation characteristics
[36]. The linear combination of input and bias is propagated
through a series of nonlinear vectors of transfer functions
(namely the hidden layer) until the final linear combination is
transmitted to the output layer. The feed-forward NN struc-
ture [37] selected in this work has two hidden layers con-
necting the input layer and output layer, denoted as I–J–K–1,
which means that there are I nodes in the input layer with one
node in the output layer. The form of the NN function can be
written as,
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where = ¼j J1, , ; = = ¼k K x i I1,..., ; 1, ,i ( ) is taken as
the input vector and y is the output of the NN function. The
weights wi j

l
,

( ) are connected to the jth neuron in the -l 1( ) th
layer and the ith neuron in the lth layer. The excitation
functions of the neuron are f 1 and f ,2 which are formed as
the hyperbolic tangent functions. bn and xi are the bias vector
and input value vector, respectively. Since the data volume
and complexity of different physical quantities change in
detailed simulations, the number of neurons in the hidden
layer is changed at the same time. This will be introduced
separately in the next section.

In the training process, the Levenberg–Marquardt algo-
rithm [38] is applied to optimize the parameters of the NN
model. The accuracy of the fitting can be expressed by the
root mean square error (RMSE). In order to improve the fit-
ting accuracy, we adopt the ‘early stopping’ approach [39] to
avoid overfitting. We randomly selected 95% of the data
points as the training database with the remaining 5% as the
validation set. To further reduce the random errors, the final
ExFC-NN is obtained by averaging over three NN fits with
the smallest RMSE. The RMSE expression is as follows:
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In the formula, En
ExFC represents the simulation result of

ExFC and En
fit is the training result of the NN model. N

represents the number of points contained in the training set.
Most importantly, before the modeling, it is critical to select the
appropriate plasma parameters for constructing the data set.
Figure 2 shows the process of constructing the database in
detail. According to the flow chart, further data points are added

iteratively by running the ExFC. Although in the nonlinear
steady state, the simulation results of the ExFC still have slight
fluctuations during the nonlinear evolution. Here, an acceptable
relative error range is defined as =A b b,1 2[ ] in which b1

and b2 are taken as = - +Db E E E ,t t t t1
ExFC

1
ExFC ExFC( )/ =b2

- -DE E E .t t t t
ExFC

1
ExFC ExFC( )/ Here, Et

ExFC is the ExFC simulation
data taken at time point t, and DEt t1

ExFC
 represents the simulation

data with time difference Dt1, as marked in figure 1. In other
words, A represents the range of fluctuation errors.

3. Numerical results with the ExFC-NN model

Based on the above discussion and combined with the char-
acteristics of the database, the double hidden layer feed-for-
ward NN is finally selected in this work. In this NN topology,
information starts to propagate from the layer of input neu-
rons and goes through two hidden layers. Finally, it is passed
out of the output layer. Once the relationship between input
and output layers is found on the training data set, the NN
model can be used to predict the output of similar inputs.
Furthermore, some points are also taken outside the database
to verify the accuracy of the ExFC-NN. After establishing a
credible ExFC-NN model, this section focuses on the appli-
cations of the model.

First, the trained ExFC-NN model is applied to predict
the type of dominant turbulence, ITG or TEM or coexisting
ITG and TEM, transformed by changing the gradients of
three key parameters: plasma density, ion and electron

Figure 2. Schematic diagram for the construction of simulation
results based on the ExFC in order to obtain a reliable ExFC-NN
model.
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temperatures. To establish the database, a total of about 2800
cases were selected for the NN training and validation set
according to the steps in figure 2. The NN topology here is
3-8-11-1, which means that two hidden layers have 8 neurons
and 11 neurons, respectively. The schematic diagram is
shown in figure 3. The input of the NN is a series of para-
meters describing the characteristic length including the
density gradient (R Ln/ ), ion temperature gradient (R LTi/ ) and
electron temperature gradient (R LTe/ ), while the output layer

of the NN is a type of dominant turbulence, namely, ITG,
TEM or ITG and TEM. After the training process, the pre-
diction results based on the NN model are compared with the
simulation results of the ExFC. The correct rate of turbulence
type prediction is displayed in table 1. It is shown that this
method can effectively classify these three types of data. The
intuitive comparison result is shown in figure 4. With the
increment of R L ,Ti/ the type of instability changes from
TEM-dominated to ITG-dominated, which is consistent with
the ExFC simulations. We firmly believe that when any set of
gradient parameters is given, the type of dominant turbulence
in the nonlinear phase can be directly and effectively judged,
along with saving calculation time and cost. In other words, a
faster method for parameter design can be provided.

Second, the ExFC-NN model is considered to predict the
averaged flux under any parameters. Shown in the introduc-
tion, ExFC as a transport simulation code, is mainly used to
analyze the turbulence transport process. For different gra-
dient parameters, the transport properties change very
obviously. Furthermore, the study of anomalous transport
involving parameter scanning usually takes a long time. Here,
we take the prediction of the radial averaged value of the
electron heat transport Qe as an example to illustrate the
effectiveness of the NN model. Figure 5 shows the 2D
regression distribution of Qe obtained by the NN model pre-
diction and ExFC simulation within the training domain

=   R L R L R L, , 1 20; 1 20; 1 30 .n Te Ti( ) [ ]/ / / The

Figure 4. Comparison of the type of dominant turbulence obtained
from ExFC simulations (squared) and ExFC-NN modeling predic-
tions (star) as a function of R LTi/ with = =R L R L8, 1.nTe/ / Test
data are outside the database.

Figure 3. Schematic of the NN topology for the prediction of the dominant turbulence.

Table 1. The accuracy of classification via ExFC-NN model.

Dominant turbulence First class (ITG) Second class (ITG and TEM) Third class (TEM)

Accuracy of prediction 0.994 0.910 0.997
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regression coefficient = 0.982R also quantitatively illustrates
the accuracy of this prediction method. Comparison between
the predicted value of the NN-based model and the ExFC
simulation result are directly shown in figure 6. The relative
error of figure 6(a) is less than 5%, which shows that the
characteristics of the inward heat flux of electrons can be
predicted. The relative error calculated in figure 6(b) is less
than 8%. In particular, the NN-based model can also perfectly
predict a typical physics phenomenon where Qe increases
suddenly as R LTe/ rising to a certain threshold. Similar pre-
dictions can also be made for averaged particle flux G and ion
heat flux Qi (which are not plotted here). It is worth men-
tioning that particle pinch (namely, the particle flux is nega-
tive) occurs in a certain parameter regime, and the NN model
can also accurately reproduce it.

Third, besides predicting the averaged flux shown above,
the developed ExFC-NN model can take into account the
global effect of turbulent transport. For this feature, we pre-
dict the radial profiles of fluxes and related perturbations.
Global transport means that the flux at a fixed radial position
does not only depend on local parameters at the same radial
position. In this case, each input/output of the NN model
requires multiple neurons for us to understand the plasma
parameters at multiple locations across the whole plasma
radius, and about 2700 ExFC simulation data sets randomly
selected from the database (including the selected radial 64
grid data) are used as the training base to train the network.
Here, the input is the initial radial distribution
T r T r n r, ,i0 e0 0( ( ) ( ) ( )) instead of the dimensionless gradient
value and the NN topology is 7-40-40-1. The training result
of the radial profile of ion temperature perturbation T ri ( ) is
shown in figure 7. Figure 7(a) is a 2D regression distribution
diagram of the predicted values of the NN model and the

results of the ExFC simulation. The regression coefficient is
= 0.992R , indicating that the training precision is good.

Figure 7(b) shows the radial profile of T ri ( ) under random
initial distribution, and T ri ( ) is successfully predicted in the
nonlinear phase with a relative error of less than 0.4%. At the
same time, the same processing is done for the density profile
n r( ) and the NN topology remains unchanged. As shown in
figure 8(a), the 2D regression distribution graph with a
high regression coefficient = 0.992R also indicates perfect
training results. Figure 8(b) exhibits that the results of the
ExFC and NN are basically the same and the relative error is
less than 0.7%. It is worth focusing on the fact that the profile
given in figure 8(b) shows that in the nonlinear stage under
this parameter, the density perturbation is relatively obvious
and the NN model can fully capture the change in the whole
radial direction.

Finally, the ExFC-NN model is trained to produce radial
profiles of fluxes. Figure 9 shows the prediction results of the
radial profile of ion heat fluxQ r .i ( ) The topology is 7-50-80-1
and the regression coefficient = 0.992R is calculated, as
shown in figure 9(a). The comparison result of the ExFC and
NN models is plotted in figure 9(b), showing that the relative
error is less than 8%. Since the gradient mainly locates at the
position of =r 0.5, the maximum value of the flux falls in the
same position. It can be seen from figure 9(b) that the error of
the prediction result near =r 0.5 is small. Similarly, for the
radial profile of the electron heat transport Q r ,e ( ) as shown in
figure 10, the prediction result is comparable with the ExFC

Figure 6. Comparison of radially averaged electron heat fluxes
obtained from ExFC simulations (squared) and ExFC-NN modeling
predictions (star) as a function of R LTe/ (a). = =R L R L20, nTi/ /
1; (b) = =R L R L11, 1.nTi/ / Test data are outside the database.

Figure 5. Regression histograms of radial averaged electron
heat flux comparing the ExFC-NN approach and ExFC
simulations with training domain =R L R L R L, ,n Te Ti( )/ / /

  1 20; 1 20; 1 30 ,[ ] 2 is the coefficient of determination.
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Figure 9. (a) Regression histograms of Q ri ( ) comparing the ExFC-NN approach and ExFC simulations, 2 is the coefficient of
determination; (b) comparison of Q ri ( ) obtained from ExFC-NN modeling predictions (star) and ExFC simulations (squared). Here, the test
data are outside the database.

Figure 8. (a) Regression histograms of n r( ) comparing the ExFC-NN approach and ExFC simulations,2 is the coefficient of determination;
(b) comparison of n r( ) obtained from ExFC simulations (squared) and ExFC-NN modeling predictions (star). Here, the test data are outside
the database.

Figure 7. (a) Regression histograms of T ri ( ) comparing the ExFC-NN approach and ExFC simulations,2 is the coefficient of determination;
(b) comparison of T ri ( ) obtained from ExFC simulations (squared) and ExFC-NN modeling predictions (star). Here, the test data are outside
the database.
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simulation result with a low error. The topology here is
transformed into 7-50-70-1.

4. Conclusion

In this work, a credible NN transport model, ExFC-NN, is
established to predict the type of dominant turbulence and
associated transport property. ExFC-NN is suitable for the
electrostatic ITG and TEM turbulence. The database for
training the ExFC-NN is built based on the simulation results
performing the extended fluid code ExFC. The well-trained
ExFC-NN model is able to perfectly reproduce and predict
what the ExFC simulation can do, and the calculation speed is
much faster than the latter one. In detail, the NN model can be
used to predict the type of dominant turbulence, radially
averaged fluxes, and radial profiles of electron temperature
T r ,e ( ) ion temperature T ri ( ) and density n r( ) as well as the
corresponding electron heat flux Q r ,e ( ) ion heat flux Q ri ( ) and
particle flux G r .( ) All accuracies are within acceptable ranges.
Most importantly, it is shown that the ExFC-NN model not
only has the ability to predict the radial local changes of per-
turbations, but can reproduce inward transport, for instance,
particle pinch. Therefore, the ExFC-NN model is expected to
realize rapid turbulent transport-related experimental analysis
of the HL-2A fusion device. It may also provide a data refer-
ence for the design of experimental parameters. The relevant
analysis will be further presented in future work.

Although the applications of the present ExFC-NN
model have exhibited perfect feasibility and fast calculation
speed as well as sufficient accuracy, there are still numerous
possibilities to advance the model by improving the NN
algorithm and expanding the dependence of more relevant
parameters, especially in the quasi-steady nonlinear stage. On
one hand, more essential plasma parameters, such as the
inverse aspect ratio e, safety factor q and magnetic shear s can
be involved as input parameters in the NN model. On the
other hand, some typical features of turbulence and associated
transport obtained from the ExFC simulation can be collected
into the database. For instance, the spatiotemporal evolution
of the density and heat fluxes could be well predicted by the

ExFC-NN model if the characteristics of the turbulence
structure are taken as the input parameter. Furthermore, the
ExFC-NN model can be applied to analyze nonlinear
dynamics, such as Dimits shift [40]. At the same time, it will
work well to establish a NN model including electromagnetic
effects, which may be of much significance with regard to
computational efficiency and cost.
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