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Abstract
By containing ponderomotive self-channeling, the propagation behavior of an intense laser beam and
the physical conditions are obtained theoretically in a radial power-law plasma channel. It is found
that ponderomotive self-channeling results in the emergence of a solitary wave and catastrophic
focusing, which apparently decreases the region for stable propagation in a parameter space of laser
power and the ratio of the initial laser spot radius to the channel radius (RLC). Direct numerical
simulation confirms the theory of constant propagation, periodic defocusing and focusing oscillations
in the parameter space, and reveals a radial instability which prevents the formation of bright and
dark solitary waves. The corresponding unstable critical curve is added in the parameter space
numerically and the induced unstable region above the unstable critical curve covers that of
catastrophic focusing, which shrinks the stable region for laser beams. For the expected constant
propagation, the results reveal the need for a low RLC. Further study illustrates that the channel
power-law exponent has an obvious effect on the final stable region and laser propagation, for
example increasing this exponent can enlarge the stable region significantly, which is beneficial for
guiding of the laser and increases the lowest RLC for constant propagation. Our results also show
that the initial laser amplitude has an apparent influence on the propagation behavior.

Keywords: laser beam, power-law channel, propagation dynamics, stability

(Some figures may appear in colour only in the online journal)

1. Introduction

The propagation of laser beams [1, 2] has received consider-
able attention due to their important applications, such as
plasma-based acceleration [3–10], harmonic generation
[11, 12], x-ray lasers [13, 14] and advanced laser fusion
schemes [15]. A laser beam can propagate in a vacuum by
about a Rayleigh length due to natural diffraction. For the
above applications, however, more than several Rayleigh

lengths are required. Propagation in a plasma may effectively
increase the traveling distance. In a uniform plasma, the laser
suffers relativistic self-focusing, which can overcome natural
diffraction and ensure a long propagation distance if the laser
power is larger than a critical value. When the laser power is
smaller than this critical value, however, relativistic self-
focusing fails to prevent diffraction and other focusing methods
are needed. A preformed plasma channel is an effective tech-
nique for providing a powerful focusing effect and can play the
role of a waveguide tube [7]; preformed plasma channels are
widely used for laser guiding in related works.
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As we know, preformed channels are usually designed to be
parabolic in the radial direction [7, 16, 17]. Other channels have
previously received less attention than the usual parabolic chan-
nel. Nevertheless, some special advantages have been reported for
non-parabolic channels. For example, a class of Raman-type
instabilities may be stabilized in a leaky density channel [18, 19]
and good stable laser transmission with high quality in inhomo-
geneous plasmas can be achieved in a hollow channel [20–25]. In
addition, recent work on the development of q-Gaussian, super-
Gaussian and quadruple Gaussian lasers [26–32] may inspire
investigation of laser guiding in non-parabolic channels. In
experiments, various channel structures can be achieved by
controlling some of the experimental parameters [4, 7, 33–35].
Therefore, the investigation of laser propagation in non-parabolic
channels is necessary and crucial. Quasi-matched propagation of
laser pulses in a plasma channel with a general radial profile has
recently been studied [36]. Attention to the corrugated channel
has revealed rich laser beam behaviors, such as aperiodic oscil-
lation, resonance, beat-like waves and periodic oscillation with
multipeaks [37]. Our recent work on laser propagation in a radial
power-law channel [38], which is a reasonable and general
extension of a parabolic density channel, has revealed that con-
stant propagation is sensitive to the power-law exponent.

In preliminary work [38] on radial power-law plasma
channels, however, ponderomotive self-channeling was not
considered because of the difficulty of theoretical analysis.
Ponderomotive self-channeling is related to the ponderomotive
force, which can be viewed as the radiation pressure, i.e. the
gradient of the electromagnetic energy density [7]. Under the
action of this force, electrons are expelled transversely away
from regions of high laser intensity in the long pulse length
limit and ponderomotive self-channeling emerges. Previous
studies on ponderomotive self-channeling [39–41] in parabolic
channels revealed a more complex parameter space than in
[38]. After comparisons, it can be found that ponderomotive
self-channeling can result in a parameter region for catastrophic
focusing, and apparently decreases the traditional propagation
domain in parameter space for a parabolic channel. Therefore,
for an investigation into a radial power-law channel ponder-
omotive self-channeling must be contained.

After some effort we overcame the theoretical difficulty of
treating ponderomotive self-channeling in a radial power-law
plasma channel and developed the theory presented in this work.
Meanwhile, we also investigated the propagation dynamics by
direct simulation of the wave equation with the finite difference
method. The laser behaviors and their physical conditions are
analyzed. As expected, ponderomotive self-channeling induces
the emergence of solitary waves and catastrophic focusing,
which obviously decreases the area for stable laser propagation.
Some interesting findings were obtained. (1) Theoretical results
indicate that the increase in the channel power-law exponent
may dramatically decrease the domain for catastrophic focusing
and be conducive to laser propagation. (2) Direct numerical
simulation confirms the theory of constant propagation, periodic
defocusing and focusing oscillations in parameter space, and
reveals a radial instability which prevents the formation of bright
and dark solitary waves. We added the corresponding unstable
critical curve to the parameter space numerically and the induced

unstable region above the unstable curve covers that of cata-
strophic focusing, which further shrinks the stable region for
laser beams. (3) For the usually expected constant propagation,
the results reveal the need for a lowest RLC (ratio of the initial
laser spot radius to the channel radius). (4) Increasing the
channel power-law exponent can enlarge the final stable region
significantly and also increase the lowest RLC for constant
propagation. It should be noted that findings (2) and (3) recover
the previous knowledge even for the case of a parabolic channel,
such as in a previous study of solitary waves [39] and other
studies associated with constant propagation. Our studies also
demonstrate the obvious effects of the initial amplitude of the
laser on the propagation behavior. These findings are important
for the guiding of lasers and other related applications.

This paper is organized as follows. The basic model and
evolution equations are given in section 2. The propagation
types and characteristics are obtained theoretically in section 3.
Numerical simulation of the wave equation and further analysis
are done in section 4. A summary is provided in section 5.

2. Basic model and evolution equations

Taking into account ponderomotive self-channeling and the
weakly relativistic limit (|a|2= 1, where a is the normalized
vector potential and its normalization is presented after
equation (2)), an intense laser beam propagating in an
underdense plasma (n/nc< 1, where n is the density of the
underdense plasma and nc is the critical density) is described
by the following two equations [40–44]:
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where a(r, z, t) is the vector potential and is normalized by
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2/e, m0 and e are the electron rest mass and charge,
respectively, c is the velocity of light in a vacuum,
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where n0 is the initial axial density of the electron, rch is the
channel radius and d> 0 is the power-law exponent. When
d= 2, equation (3) is reduced to the familiar parabolic case. The
Coulomb gauge ∇ · a= 0 is adopted in deriving equations (1)
and (2). Obviously, equation (1) is the wave equation for the
laser field and equation (2) describes the perturbed electron
density associated with the excitation of the wakefield. For
simplicity, we consider the dynamics in the long pulse length
limit ωpτl? 1, with τl the laser pulse width. Thus, equation (2)
is simplified as [40]
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where kp=ωp/c represents the plasma wave number.
Equation (4) shows the formation of ponderomotive self-chan-
neling [7], which was ignored in our earlier work [38] for
simplicity.

Here, we study a circularly polarized laser beam propa-
gating along the z direction in a plasma. So, the form of the
vector potential is set as

( ) ( ) [ ( )]( ˆ ˆ )

( )

w= - + +a x yr z t a r z t k z t, ,
1

2
, , exp i i c.c.,

5

0 0

where a(r, z, t) represents a complex slowly varying envelope,
ω0 represents the laser center frequency, k0= vgω0/c

2 repre-
sents the wave number of the laser center, vg represents the
laser group velocity and x̂ and ŷ are unit coordinate vectors;
c.c. is the complex conjugate.

By using equations (3)–(5) and the coordinate transfor-
mation z= z, τ= t− z/vg with paraxial treatment and the
slowly varying envelope assumption |∂a/∂τ|= |ωpa|,
equation (1) is changed to
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In equation (6), the fifth term is caused by ponderomotive
self-channeling. Without this term, equation (6) reduces to
equation (4) in [38]. Setting d= 2 corresponding to the
parabolic case and adopting the assumption of the linear

dispersion relation ( - - =w w
k 0

c c0
20

2

2

p
2

2 ), equation (6) is
simplified to become equation (3) in [39] and equation (5)
in [40].

To get the solution to equation (6), we adopt the fol-
lowing trial function:

( ) ( ) [ ( )] [ ( ) ( )] ( )f= - +a r z a z r r z b z r z, exp exp i i , 7r
2

s
2 2

where ar, rs, b and f represent the amplitude, spot radius,
spatial chirp parameter and phase shift of the laser beam in
plasmas at any distance z, respectively. By applying the
variational method [38, 40, 41, 44–46] to equation (6), one
can obtain the following equations for ar, rs, b and f:
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where ( )G +1 d

2
is the gamma function. Based on the four

coupled first-order differential equations, the propagation
types and characteristics of the laser beam can be discussed.
By neglecting the terms of ponderomotive self-channeling
(i.e. -a rr

2
s
4 in equation (10) and a rr

2
s
2 in equation (11)),

equations (8)–(11) reduce to equations (6)–(9) in [38]. With
d= 2 and linear dispersion relation, equations (8)–(11) are
simplified to equations (5)–(8) in [39].

3. Propagation types and characteristics

Equation (8) shows that =a r a rs
2

s
2

0
2

0
2, with a0 being the

initial (z= 0) laser amplitude and r0 the initial laser spot
radius. Using arrs= a0r0 and combining equations (9) and
(10), the normalized evolution equation of the laser spot
radius becomes
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and critical power Pc for relativistic self-focusing, respectively.
The four terms on the right-hand side of equation (12) are
caused by beam diffraction, relativistic self-focusing, ponder-
omotive self-channeling and preformed channel focusing,
respectively. By neglecting the ponderomotive self-channeling
term, i.e. the third term on the right-hand side of equation (12),
equation (12) reduces to equation (10) in [38].

Integrating equation (12) with the initial condition
rs|z=0= 1 and drs/dz|z=0= 0, one obtains
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The form of equation (13) is similar to the energy conservation
equation for a particle with ‘time z’ and ‘position rs’. Thus, we
can investigate equation (13) by analyzing the Sagdeev potential.

To get the features of the Sagdeev potential, we begin with
the investigation of the two equations V(rs)= 0 and ( )¢ =V r 0s .
For the parabolic case, it is easy to list the roots of V(rs)= 0
[40, 41, 44], so that one can get the propagation characteristics
directly. However, it seems that there is no algebraic theory to
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give their roots directly for a general d. Nevertheless, we can get
some important properties of the roots under the appropriate
conditions 0< p< 1, Nc> 0 and d> 1. A detailed analysis of
the properties is included in the Appendix and the main
results are

(1) for V(rs)= 0, the value 1 is one root and there are at
most two other positive roots

(2) ( )¢ =V r 0s may have no positive root, one positive root
or two positive roots.

According to the two properties, considering the asymptotic
behaviors of V(rs), i.e. V(rs)→∞when rs→∞ and
V(rs)→−∞when rs→ 0, the qualitative figures of the
Sagdeev potential around V(rs)= 0 can be drawn as in
figure 1, which includes nine kinds of profile. Figures 1(a)–(c)
correspond to the case of three roots of V(rs)= 0. Figures 1(d)
–(g) represent the case when there are two roots. Figures 1(h)
and (i) are for the case of only one root. For the one-root case,
it should be mentioned that there may exist other profiles
besides figures 1(h) and (i). However, it is not necessary to
investigate these other mathematical profiles because the
basic physical behaviors in the one-root case are adequately
included in figures 1(h) and (i).

From figure 1, one can directly get the following pro-
pagation types and characteristics of the laser beam.

(1) Catastrophic focusing. In the cases shown in
figures 1(a), (f), (h) and (i), the particle will move to
the position rs= 0 considering the asymptotic behavior
of V(rs), i.e. V(rs)→−∞when rs→ 0. In this case, the
laser beam will catastrophically focus at the position
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Obviously, the point rs= 0 will never be reached
because the intensity of laser will large enough to
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(2) Periodic defocusing oscillation. In the case shown in
figure 1(b), the motion of the particle is bounded
between the positions 1 and r1, where r1> 1. It can be
seen that rs� 1 in this kind of evolution of rs. The
condition for this case is ( )∣¢ <=V r 0rs 1s
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(3) Periodic focusing oscillation. In the case shown in
figure 1(c), the motion of the particle is bounded
between the positions r2 and 1, where r2< 1. It can be
seen that rs� 1 in this kind of evolution of rs. The
condition of this case is ( )∣¢ >=V r 0rs 1s
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(4) Constant propagation. In the case shown in figure 1(g), the
particle locates at the minimum point of V(rs), initially

Figure 1. Diagram of V(rs) around V(rs)= 0. Parts (a), (b) and (c)
correspond to the case when there are three roots of V(rs)= 0. Parts
(d), (e), (f) and (g) correspond to the case of two roots of V(rs)= 0.
Parts (h) and (i) correspond to the case of only one root. The marked
dots represent the initial position of a test particle with rs|z=0 = 1 and
drs/dz|z=0 = 0.
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with with zero velocity. So the particle will stay at rest.
This means that the laser spot radius does not change and
the type of propagation is constant propagation. The
corresponding power can be obtained by solving

( )∣¢ ==V r 0rs 1s
under ( )∣ >=V r 0rs 1s

, which yields
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(5) Solitary wave. In the figures 1(d) and (e), it can be
concluded that the maximum points rs= 1 in figure 1(d)
and rs= r3 in figure 1(e) are all saddle points by linear
stability analysis. According to the corresponding non-
linear theory [44], equation (13) has solitary wave solutions
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As we known, solitary waves are typical solutions for a
variety of nonlinear systems, such as in the deep ocean
[47], plasmas [48] and others. Here, a bright solitary
wave means a single ‘hump’ of rs, while a dark solitary

wave represents a single ‘pit’ of rs. One should note that
these are quite different.

Obviously, the propagation types in this power-law density
channel are very rich. Meanwhile, the condition of each pro-
pagation type strongly depends on d. To make a further study of
the propagation characteristics and the channel effects, we plot
the propagation characteristics map in parameter space (p,
r0/rch), i.e. figure 2, in which the parameter regions corresp-
onding to different types are classified using the above condi-
tions. The correctness of figure 2, i.e. the above theory based on
equation (12), is well verified by solving this ordinary differ-
ential equation (12) numerically and we display some of the
solutions in figure 3. With the parameters presented in figure 2,
the behaviors of the constant propagation, dark solitary waves
and bright solitary waves are respectively shown in figures 3(a),
(b) and (c) for different d. All the above five types are displayed
in figure 3(d) by setting d= 4 as an example. With the increase
in laser power p, periodic defocusing oscillation, constant pro-
pagation, periodic focusing oscillation, dark solitary waves and
catastrophic focusing are illustrated in figure 3(d). For a fixed d,
it can seen that figure 3(b) displays a string of dark solitary
waves instead of a single one, which is related to the instability
of the saddle point in the nonlinear system.

Let us first observe and analyze the parameter regions for a
given d in figure 2. It can be seen that there exists a phase
transition point { ( )[ ( ) ] }= G + + - +-r r a d d d a d2 1 2 2 4 4d

0 ch 0
4 1 2

0
2d ,

( ) [ ( )( ) ]= - + G +-p a d r r d a1 2 1 2 1 2d d
0
2 2 2

0 ch 0
2 marked

with a rectangle for a given d. When r0/rch is larger than
the horizontal ordinate of this point, there are five regions
which correspond to periodic defocusing oscillation, constant
propagation, periodic focusing oscillation, a dark solitary
wave and catastrophic focusing, respectively. When

{ ( )[ ( ) ] }< G + + - +-r r a d d d a d2 1 2 2 4 4d
0 ch 0

4 1 2
0
2d , however,

there are only three regions for periodic defocusing oscillation, a
bright solitary wave and catastrophic focusing, respectively. That
is to say, the motions of constant propagation and periodic
focusing oscillation are impossible when the injected spot radius
is less than a small value. We should emphasize that this finding
was omitted and has not been considered in previous work, even
in the parabolic channel. Comparing figure 2 with figure 1 in [38],
it is found that the parameter regions are much more complex
than in [38] and this is induced by containing the ponderomotive
self-channeling. Besides solitary waves, we think that the main
contribution of ponderomotive self-channeling is catastrophic
focusing because it occupies a large area which dramatically
decreases the region for stable propagation.

Now, we attend to the influence of d on parameter areas
in figure 2. Obviously, the phase transition point moves
towards larger r0/rch when d increases. Increasing d flattens
the central channel part, which decreases preformed channel
focusing when r0/rch is small. To recover from the loss of the
channel focusing effect, a relatively larger r0/rch is naturally
needed for the new phase transition point with larger d. For
constant propagation, there exists a critical value r0/rch|1 (labeled
in figure 2). When r0/rch< r0/rch|1, p for constant propagation
increases with d but varies oppositely when r0/rch> r0/rch|1; this
was stated in [38] so we pay no attention to it here. For the new
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discovery in this work, there is also another critical value
r0/rch|2(≈ 1), below which p for the dark solitary wave appar-
ently increases with d. Obviously, r0/rch|2> r0/rch|1. We think
that this is because the laser spot radius of the dark solitary wave
is always less than or equal to that for the constant propagation.
Thus, for the same real critical radial length of the laser with
regard to the variation of channel focusing with d, a relatively
larger initial spot radius is needed for a dark solitary wave, and
r0/rch|2> r0/rch|1 is reasonable. In addition, it should be men-
tioned that the intersection points at r0/rch|1 and r0/rch|2 are both
very small intersection regions. So the two critical values r0/rch|1
and r0/rch|2 should strictly be two very small regions around
r0/rch|1 [38] and r0/rch|2. Nevertheless, it is natural to think that
our adoption of the two critical values r0/rch|1 and r0/rch|2 is a
very good approximation and helps to illustrate the physics. We
should possibly pay more attention to the region of catastrophic
focusing, which is sensitive to the channel power-law exponent
d. With increasing d, the area of catastrophic focusing shrinks
significantly and thus the region for stable propagation enlarges.

Besides d, it can be found from equations (16)–(25) that
the parameter regions also depend on a0. In figure 4, we plot
the parameter regions for different values of a0. It can be seen
that with increase in a0 the phase transition point moves to the
bottom right, causing an obvious change in the phase dia-
gram. Correspondingly, the curve of the solitary wave (con-
taining bright and dark solitary waves) moves down,
increasing the area of catastrophic focusing; the area of per-
iodic oscillation (containing periodic defocusing oscillation

and periodic focusing oscillation) gradually decreases.
Meanwhile, the constant propagation curve moves up, indu-
cing an increase in the area of periodic defocusing oscillation
and a decrease in the area of periodic focusing oscillation.
Compared with the dark solitary wave curve, a0 has a more
obvious effect on the curves for constant propagation and
the bright solitary wave. Now we analyze the reason for the
main variations of the parameter regions. According to
equation (12), when a0 increases and other parameters are
fixed, the ponderomotive self-channeling effect is enhanced
while the preformed channel focusing effect is weakened. The
variation of parameter regions with a0 is the result of com-
petition between these two effects. For the parameters around
the constant propagation curve, rs varies about 1. In this case,
the reduction of the preformed channel focusing effect
induced by a0 is more obvious than the enhancement of the
ponderomotive self-channeling effect. This causes the con-
stant propagation curve to move up. For the values around the
minimum rs of a dark solitary wave, however, the enhance-
ment of the ponderomotive self-channeling effect is relatively
obvious this time, and the dark solitary curve moves down.

In figures 2 and 4, the laser propagation behaviors are
analyzed in the phase diagram (p, r0/rch), where p and r0/rch
are dimensionless parameters and their variation may mean a
complete change of the laser beam and plasma background.
Now we study the propagation behaviors from another per-
spective, i.e. paying attention to the laser behaviors in the
parameter space (a0, r0) of the initial laser under the condition
of a given plasma background n0 and rch. In order to display
this simply, we actually use (a0, r0/rch) in the following part.
Therefore, by using n0= 0.02nc and rch= 30 μm, a corresp-
onding phase diagram is drawn in figure 5(a). As expected,
the parameter space is divided into five regions through a
phase transition point, and the distribution of these parameter

Figure 2. Parameter regions of laser propagation types. The black,
green and red curves represent the conditions for constant
propagation, bright solitary wave and dark solitary wave respec-
tively. The dashed curves are for d= 2 and the types of curves for
other d values are labeled in the figure. For a fixed d, the areas
beneath the green and black curves, between the black and red
curves, and above the green and red curves correspond to periodic
defocusing oscillation, periodic focusing oscillation and catastrophic
focusing, respectively. The small black, red, green and blue
rectangles correspond to d= 1.5, 2, 3 and 4, respectively, and
represent the phase transition points for the division of the parameter
regions. The empty circles are parameter points used for simulation
in figure 6 of section 4. Here, a0 = 0.3.

Figure 3. Display of the laser propagation types shown in figure 2.
Parts (a), (b) and (c) represent constant propagation, dark solitary
waves and bright solitary waves respectively. Parts (d) shows the
variation of laser behavior with increase in laser power p for d= 4,
and it can be seen that periodic defocusing oscillation, constant
propagation, periodic focusing oscillation, a dark solitary wave and
catastrophic focusing may occur with the increase in p. Here, a0= 0.3.
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regions is also similar to figure 2 from a topological point of
view. However, figure 5(a) reveals some important informa-
tion that cannot be found from figure 2. Firstly, one cannot
simply think that constant propagation can be achieved at any
the initial spot radius r0 for a given plasma background.
Actually, figure 5(a) only shows a small allowed range, i.e.
r0/rchä (0.24, 0.38). It is worth noting that this conclusion
does not mean that the range (0, 1) for constant propagation in
figure 2 is irrational, because it is always possible to move
and adjust the range of r0/rch for constant propagation by
changing the plasma background. Secondly, on the curve for
constant propagation, a0 increases rapidly with the decrease
of r0, In other words, a0 is sensitive to changes in r0 for
constant propagation, especially for small a0. Finally, the
above two limitations of the constant propagation condition
reveal the importance of focusing and defocusing oscillations.
Figure 5(a) shows that there is a considerable area supporting
the two behaviors. Figures 5(b) and (c) show the variations of
parameter regions with the changes of n0 and rch, respec-
tively. As n0 and rch increase separately, parameter regions
move to the bottom left. Meanwhile, we note that the changes
do not induce variation of the main characteristics revealed by
figure 5(a).

Considering the complexity of the real propagation and
the obvious effects of the channel power-law exponent d and
the initial laser amplitude a0, it is necessary to make a num-
erical simulation of equation (6) to verify the theoretical
results in the next section. We will see that the numerical

results reveal a new unstable critical curve corresponding to
radial instability [49, 50] in parameter space (p, r0/rch). The
theoretical predictions below this curve are verified, while the
formation of solitary waves is prevented because of the radial
instability. Many other interesting findings will be found in
the next simulation.

4. Numerical simulation

To illustrate the propagation characteristics of the laser beam
and verify the above theoretical results, we will make a direct
numerical simulation of the wave equation, i.e. partial diff-
erential equation (6), in this section. Therefore, with the
assumption of an initial linear dispersion relation
w w- =c k c0

2 2
0
2

p
2 2, we can simplify equation (6) under

axisymmetric condition and normalize it as
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In this equation, r is normalized by r0 and p and z are

Figure 4. The effect of a0 on the parameter regions. The black, green
and red curves represent the conditions for constant propagation,
bright solitary wave and dark solitary wave, respectively. The
dashed curves are for a0 = 0.3 and the types of curves for other a0
are labeled in the figure. For a fixed a0, the areas beneath the green
and black curves, between the black and red curves, and above the
green and red curves correspond to periodic defocusing oscillation,
periodic focusing oscillation and catastrophic focusing, respectively.
The small black, red, green and blue rectangles correspond to
a0 = 0.2, 0.3, 0.4 and 0.5, respectively, and represent the phase
transition points for the division of the parameter regions. The empty
circle is a parameter point used for simulation in figure 9 of
section 4. Here, d= 4.

Figure 5. (a) Parameter regions of laser propagation types in the
space (a0, r0/rch) for rch = 30 μm and n0 = 0.02nc. The black, green
and red curves represent the conditions for constant propagation,
bright solitary wave and dark solitary wave, respectively. The areas
beneath the green and black curves, between the black and red
curves and above the green and red curves correspond to periodic
defocusing oscillation, periodic focusing oscillation and catastrophic
focusing, respectively. (b) The variation of parameter regions with n0
for rch = 20 μm. From right to left, the curves correspond to
n0 = 0.02nc, 0.04nc and 0.06nc, respectively. (c) The variation of
parameter regions with r0/rch for n0 = 0.02nc. From right to left, the
curves correspond to rch = 20 μm, 30 μm and 40 μm, respectively.
Here, d= 4 and nc ≈ 9.84× 1026 m−3 for a laser with wavelength
λ= 1064 nm.
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normalized quantities identical to those in equation (12). The
injected initial laser beam is set to be ( ) ( )= -a r a r, 0 exp0

2 .
Then equation (26) can be numerically solved using the
finite difference method as successfully performed in
[28, 37, 38, 51].

To begin with we make the simulation with parameters
marked by empty circles in figure 2 for d= 4. The results are
presented in figure 6 and the corresponding physical para-
meters are also labeled. It can be seen that the the simulation
results shown in figures 6(a)–(e), corresponding to p=
0.1– 0.58, are identical to the theoretical results shown in
figure 2, i.e. figures 6(a) and (b) show periodic defocusing
oscillations, figure 6(c) shows constant propagation and
figures 6(d) and (e) show periodic focusing oscillations. The
measured periods of 4.5 in figure 6(a), 3.3 in figure 6(b), 3.2
in figure 6(d) and 3.4 in figure 6(e) are also approximately
equal to the calculated values of the theoretical period for-
mulas given by equations (18) and (20) as 4.2, 3.4, 3.0 and
2.8, where the difference may be relatively large for
figure 6(e); we think this is because the corresponding laser
power of 0.58 is much nearer the 0.585 of the following radial
instability. This good consistency confirms the theoretical
results in section 3 and the numerical simulation. However,

when the laser power p exceeds 0.58 and increases to 0.59,
the laser beam fails to propagate. Here, we think the
appearance of the irregular behaviors (except constant pro-
pagation, periodic focusing and defocusing oscillations)
means a failure of propagation. With a clear observation of
the simulation at p= 0.585 shown in figure 7, we find the
failure of propagation is related to instability in the radial
direction [49, 50] (radial shape change and some micro-
structures related to the instability can be seen in figure 7(b)).

Numerical simulations with other values of r0/rch con-
firm this phenomenon. That is, for a fixed d, there should exist
an unstable critical curve in figure 2, above which the laser
beam fails to propagate stably. For d= 1.5, 2, 3 and 4, we
plot these unstable critical curves plus the corresponding
parameter regions of figure 2 in figures 8(a)–(d), respectively.
The critical curves of instability are obtained through a large
number of numerical simulations. The discrete values of
r0/rch are 0.01, 0.05, 0.10, 0.15, ... , and 1.0 respectively. For
a fixed r0/rch, we find the critical p of failure propagation by
changing p in steps of 0.005. The critical curves are obtained
by connecting the different critical points. Three important
findings can be observed from figure 8. (1) The region above

Figure 6. The modulus of the slowly varying laser envelope |a(r, z)| obtained by numerical simulations with parameters marked by empty
circles in figure 2 for d= 4, a0 = 0.3 and r0/rch = 0.4. From (a) to (e), p= 0.10, 0.23, 0.29, 0.40, 0.58 and 0.59, respectively.
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the unstable critical curve covers that of catastrophic focusing
and shrinks the region for stable laser propagation further; and
because of this, the behaviors of bright and dark solitary
waves will never occur and the laser beam can only show
periodic defocusing oscillation, propagation with a constant
spot radius or periodic focusing oscillation. (2)When r0/rch is
less than a certain value (the intersection point of the unstable
critical curve and the curve of constant propagation) for a
fixed d, even the usual constant propagation and periodic
focusing oscillation cannot exist and the laser beam can only
show periodic defocusing oscillation; in other words, and it is
only above this lowest value for r0/rch that the laser beam can
propagate with constant spot radius. (3) With the increase of
d, the lowest r0/rch increases apparently, and the unstable
region above the unstable critical curve shrinks significantly,
which enlarges the area for stable propagation.

In the previous theoretical part it was revealed that a0 has
an obvious influence on the laser propagation parameter
region. In order to further verify and visually show the
influence of a0 on laser propagation, we make numerical
simulations with r0/rch= 0.4 and p= 0.29, marked with the
empty circle in figure 4 for different a0, and show the results
in figure 9. We can see that when a0= 0.2, the propagation
behavior of the laser is periodic focusing oscillation. When
a0= 0.3, the laser propagates with a constant spot radius.
When a0= 0.4 and 0.5, propagation takes the form of peri-
odic defocusing oscillations. This is exactly consistent with
the theoretical prediction in figure 4. In section 3, figure 5(a)
revealed that constant propagation occurs only in a narrow
range r0/rch ä (0.24, 0.38) for the given plasma background
rch= 30 μm and n0= 0.02nc. To verify this result, numerical
simulation was performed for some parameter points along
two lines r0/rch= 0.23 and r0/rch= 0.4 on the two sides of
the range (0.24,0.38) and also for some parameters of the
constant propagation shown in figure 5(a). At r0/rch= 0.23,
a0 is increased from 0.05 to 0.50 in steps of 0.05. The
simulation shows periodic defocusing oscillations. At
r0/rch= 0.4, a0 is increased from 0.03 to 0.30 in steps of
0.03. The numerical simulation gives periodic focusing

oscillations. Constant propagation is also observed for the
selected parameter points (r0/rch= 0.36, a0= 0.23), (0.37,
0.16) and (0.38, 0.06) on the constant propagation curve. The
numerical simulation results confirm the theoretical results in
figure 5(a). Due space limitations, the results of the numerical
simulation are not presented in this paper.

According to the above analysis, the numerical simulation
successfully verifies the theoretical results and finds an unstable
critical curve above which the laser beam fails to propagate
stably. The unstable critical curve amends the parameter space
for laser propagation and gives rise to some interesting results
even for the parabolic channel. The modified parameter space
varies significantly with the channel power-law exponent d.

5. Summary

Containing the effect of ponderomotive self-channeling, the
propagation theory of a laser beam traveling in a power-law
channel is developed. Ponderomotive self-channeling induces a
large variation of the parameter space (p, r0/rch), which means
a much more complex laser behavior. In the variation, more
attention should be paid to catastrophic focusing because it
occupies a relatively large region and shrinks the domain of
laser stable propagation in the parameter space. Increasing the
power-law exponent can decrease the catastrophic region,
which is beneficial for laser propagation. Increasing the initial
laser amplitude, however, may enlarge the catastrophic region
moderately and induce obvious variations in the parameter
regions for other stable propagation behaviors. The effects of
the initial amplitude on the propagation behavior are also
presented and studied in another parameter space (a0, r0/rch)
for a given plasma background. By directly solving the wave
equation with the finite difference method, the propagation
dynamics and stability are also studied numerically. The
numerical simulation confirms the main theoretical results
containing the constant propagation, periodic focusing and
defocusing oscillation. Meanwhile, the numerical simulation
reveals a radial unstable critical curve in the parameter space
(p, r0/rch), above which stable propagation fails. The
unstable critical curve brings some interesting findings, for
example, it prevents the formation of bright and dark solitary
waves and the unstable region above the unstable critical
curve covers that of catastrophic focusing and further
shrinks the stable domain for the laser beam; this indicates
that the laser beam can propagate with constant spot radius
only above a certain low value of r0/rch. The unstable cri-
tical curve is sensitive to the channel power-law exponent
and this results in the apparent decrease of the unstable
region above the unstable critical curve and the increase in
the lowest r0/rch value for constant propagation with this
exponent. It can be seen that the radial instability corresp-
onding to the unstable critical curve is one of the important
discoveries in our work, and a detailed theoretical and
numerical investigation is necessary. However, this is a
systematic work with many calculations and much analysis,
and we will address it further in the near future. To sum-
marize, the obtained results recover our previous knowledge

Figure 7. Image profile of |a(r, z)| obtained by the numerical
simulation with laser power p= 0.585, d= 4 and r0/rch = 0.4
around the unstable critical value for laser propagation failure. Part
(a) presents the image profile and part (b) presents the corresponding
modulus of the laser amplitude along the radial direction at
z= 7.388.
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Figure 8. Parameter regions of laser propagation types (shown in figure 2) with unstable critical curves obtained by numerical simulation for
d= 1.5 in (a), 2 in (b), 3 in (c) and 4 in (d). The curves with black rectangles, black circles, black triangles and white circles represent the
unstable critical curves corresponding to different values of d. In the area above an unstable critical curve, the laser beam fails to propagate.
Other curves and labels are identical to figure 2. Here, a0 = 0.3.

Figure 9. The modulus of the slowly varying laser envelope |a(r, z)| obtained by numerical simulation with parameters marked by the empty
circle in figure 4 for d= 4, r0/rch = 0.4 and p= 0.29. From (a) to (d) a0 = 0.2, 0.3, 0.4 and 0.5, respectively.
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and reveal some valuable information about conditions for
stable laser propagation, it may therefore help bring insight
into the future studies related to laser propagation.
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Appendix: properties of the Sagdeev potential

Under the appropriate condition 0< p< 1, Nc> 0 and d> 1,
we investigate V(rs)= 0 and ( )¢ =V r 0s :

(1) The properties of the roots of V(rs)= 0. Firstly, rs= 1 is
one of the roots. Secondly, we rewrite V(rs)= 0 in the

form + = +- r Vp

r

N

d
d a

r

1

2

1
s 8

1
0

s
2

c 0
2

s
4 , then set the expres-

sion on the left-hand side as f (rs) and that on the right-
hand side as g(rs). Obviously, the curve

( ) = +-f r rp

r

N

d
d

s
1

2

1
s

s
2

c decreases first and reaches a

minimum value then increases finally when rs varies
from 0 to infinity (this is directly concluded by
analyzing the expression). Meanwhile, the curve

( ) = +g r Va

rs 8

1
0

0
2

s
4 decreases quickly, then slowly and

finally varies linearly. These are the geometric proper-
ties of the two curves. For illustration, an example is
shown in figure 10(a). Considering the geometric
properties and the asymptotic behaviors ∣ ¢f
( )∣ ∣ ( )∣< ¢r g rs s for rs→ 0 and ( ) ( )¢ > ¢f r g rs s for
rs→∞; making an elementary geometric analysis,
one can find that there are at most three intersection
points between the two curves f (rs) and g(rs) in the
range of rs> 0. This means that V(rs)= 0 has three
positive roots at most. In summary, one root of

V(rs)= 0 is equal to 1, and there are at most two other
positive roots.

(2) The properties of the roots of ( )¢ =V r 0s . Differentiating

equation (14) once, one obtains + =+N ra d
2 c s

40
2

( )- p r1 s
2. Considering the conditions 0< p< 1, Nc> 0

and d> 1, and making a similar geometric analysis (an
example is shown in figure 10(b)), one may conclude that
the number of intersection points of the curves

+ +N ra d
2 c s

40
2

and ( )- p r1 s
2 may be zero, one or two.

That is, ( )¢ =V r 0s may have no positive root, one positive
root or two positive roots.

We have done some numerical solutions of V(rs)= 0 and
( )¢ =V r 0s . The results are all consistent with the above

properties.
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