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Abstract
A 1D1V hybrid Vlasov-fluid model was developed for this study to elucidate discharge current
oscillations of Hall thrusters (HTs). The Vlasov equation for ions velocity distribution function
with ionization source term is solved using a constrained interpolation profile conservative semi-
Lagrangian method. The fourth-order weighted essentially non-oscillatory (4th WENO) limiter is
applied to the first derivative value to minimize numerical oscillation in the discharge oscillation
analyses. The fourth-order accuracy is verified through a 1D scalar test case. Nonoscillatory and
high-resolution features of the Vlasov model are confirmed by simulating the test cases of the
Vlasov–Poisson system and by comparing the results with a particle-in-cell (PIC) method. A
1D1V HT simulation is performed through the hybrid Vlasov model. The ionization oscillation
is analyzed. The oscillation amplitude and plasma density are compared with those obtained
from a hybrid PIC method. The comparison indicates that the hybrid Vlasov-fluid model yields
noiseless results and that the steady-state waveform is calculable in a short time period.
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Nomenclature

e Elementary charge, C
Ex Electron field in x direction, V m 1-

fi Ion velocity distribution function, s m 4-

fn Neutral velocity distribution function, s m 4-

kion¢ Reaction rate coefficient
mi Mass of single ion, kg
ne Electron number density, m 4-

nn Neutral number density, m 4-

Sion Ionization source term, m 4-

Te Electron temperature, eV
vcol Collision frequency, m s3 1- -

m̂ Electron mobility, m2 V−1 s−1

Abbreviations 
CIP-CSL Constrained interpolation profile conservative

semi-Lagrangian

EP Electric propulsion
HT Hall thruster
IVDF Ion velocity distribution function
PIC Particle-in-cell
SL Semi-Lagrangian
VDF Velocity distribution function
WENO Weighted essentially non-oscillatory

1. Introduction

A HT, a widely used EP device used for spacecraft propulsion
[1], employs a cross-field configuration with a radial magnetic
field and an axial electric field, where electrons are trapped
and move in the E B´ direction. This configuration gen-
erates efficient ionization within a short discharge channel.
An electric field is maintained to accelerate the ions to
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provide the propulsion. Although many successful applica-
tions of HTs and other Hall plasma sources have been
reported, much of their physics remains poorly under-
stood [2].

One important issue of HT is the discharge current
oscillations. Several types of fluctuations are existed in the
HT with a widely range of frequency band [3–7]. These
fluctuations are closely related to the performance and plasma
characteristics of HTs. For plasma sources, the fluctuation
with the largest discharge amplitude observed is the ioniz-
ation oscillation. In HT, ionization oscillation is also called
the breathing mode, which has a strong effect on the power
processing unit. The beathing mode typically has a frequency
in the rage of 10−30 kHz, and its physical process is often
described by using the predator–prey model [8]. Once a fre-
quent ionization occurs in the discharge channel, the ion
number density grows in this region while the propellant
neutral particles are consumed. When the neutral particles are
depleted, the ionization rate becomes small and most of the
ions are exhausted from the channel. The propellant neutrals
replenish the channel again and the next cycle of ionization
begins. Such periodic oscillation has been demonstrated
through experimentation [4] and numerical simulation [5]. A
deep understanding of the physics and accurate numerical
modelling of the oscillations in HTs are fundamentally
important for the further development of high-performance
plasma devices [3, 6, 9].

Several numerical models have been developed for sol-
ving the plasma behaviours in HTs. An early work employed
full PIC model was presented by Szabo [10], he investigated
the thruster performance of a thruster-with-anode and opti-
mized the magnetic field topology; Cho [11] used the full PIC
model to simulate a UT-SPT-62 type thruster and compared
the results of wall erosion with experiment. Hybrid PIC-fluid
models that treat heavy species kinetically and electrons as a
continuum fluid are also widely used, the a very pioneer work
was conducted by Komurasaki [12], the basic plasma beha-
viours and ion loss to the wall were studied; Kawashima [5]
combined the PIC model with hyperbolic electron fluid model
and successfully reproduced the rotation spoke in azimuthal
direction. One disadvantage of the particle model is the sta-
tistical noise which is generated due to the finite number of
macroparticles handled in the simulation [13]. For the ana-
lyses of plasma fluctuation, these numerical noises might
interfere with physical oscillations, leading to an inaccurate
conclusion.

An alternative approach to the PIC model is the Eulertian
type Vlasov model [14, 15], which can be solved through SL
method [16, 17]. SL method is a grid-based method which is
developed to solve the linear advection equation. The noise
caused by the finite number of macroparticles in the PIC
method can be eliminated by changing to the SL method
because it solves the IVDF under Eulerian framework. Fur-
thermore, the high-order WENO scheme can be employed to
reduce the numerical diffusion and keep the stability during
simulation.

As described herein, a noiseless hybrid Vlasov-fluid
model was developed to study the discharge current oscilla-
tion in HT. The flows of ions and neutral particles are
modelled through the Vlasov equation with an ionization
source term, where the electrons are assumed as fluid. High-
order schemes are desired for accurate simulation of discharge
current oscillations with short wavelengths. Fourth-order
spatial accuracy is achieved in the Vlasov equation solver and
verified using a simple test problem. In addition, the noiseless
feature of the solver is demonstrated through a two-stream
instability problem. Finally, the Vlasov equation solver is
coupled with the magnetized electron fluid model, and the
discharge current oscillation phenomenon is simulated.

2. Physical model and numerical method

2.1. Kinetic model of ion dynamics for the HT simulation

For one-dimensional (1D) simulation of the HT discharge, a
kinetic-fluid hybrid model [18] is used for this study. In this
model, the flows of ions and neutral atoms are modelled using
the Vlasov equation, where the electron flow is assumed
as fluid.

The 1D1V kinetic model includes one dimension in
space and one dimension in velocity, where the ions are
treated as non-magnetized particles. In the numerical scheme
mentioned in this paper, the ionization process and advection
process are solved separately, the ionization process follows:
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For the simplification of the equation set, the Vlasov
equation for ions with ionization source terms reads:
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and the advection process of neutral particles follows:
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here Ex represents the x-electric field, e stands for the ele-
mentary charge, mi denotes the mass of ions, f f,i n expresses
the VDF of ions and neutrals, and v v,x x,i ,n respectively denote
the velocity in the x direction. Subscripts i and n respectively
signify an ion and neutral particle. Sion is the ionization source
term. The ion and neutral number densities n xi ( ) and n xn ( )
are computed by integrating the VDFs in the velocity
dimension.
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The relation of Sion to the electron-neutral collisional
ionization is expressed as

S v n n kd , 5xion e n ionò =
-¥

+¥
( )

where ne represents the number density of electron and kion

stands for the reaction rate coefficient given as a function of
the electron temperature [1]. The distribution of Sion in the vx

direction is assumed to be similar to that of f .n Therefore,
equation (5) is simplified as

S n k f . 6ion e ion n= ( )

2.2. Electron fluid model

The quasi-neutrality assumption is assumed in the hybrid
model [19]. The Debye length of the bulk discharge plasma in
HTs is typically 10 μm, which is much smaller than the
10 mm discharge channel length. Consequently, the effects of
charge separation are neglected for simulating the bulk
plasma. The relation n ne i= is used.

The 1D electron fluid model consists of the conservation
equations of mass, momentum, and energy. With the quasi-
neutrality assumption, the mass conservation is written in the
form of the equation of continuity as

x
n u S , 7e e ion

¶
¶
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where ue represents the electron flow velocity. In the con-
servation equation of electron momentum, the electron inertia
is neglected. The drift–diffusion equation is derived as
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Therein, m̂ represents the electron mobility across
magnetic lines of force. The model for the cross-field electron
mobility is explained later in this section. By substituting
equation (8) into (7), an elliptic equation (diffusion equation)
is obtained as
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In the energy conservation equation, the kinetic comp-
onent is ignored. The equation is written in terms of the
electron internal energy as
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The second and third terms on the left-hand side
respectively denote the enthalpy convection and heat con-
duction. The first and second terms of the right-hand side are
the Joule heating and energy losses by inelastic collisions.
The coefficient Ea is a function of electron temperature
determined for xenon, which is used conveniently to include
energy losses by ionization, excitation, and radiation [1].
Also, ione represents the ionization potential of xenon.

The cross-field electron mobility is modelled using a
combination of classical diffusion and anomalous compo-
nents as

, 11,cla ,anom m m= +^ ^ ^ ( )

where ,clam̂ and ,anom̂ respectively denote the classical and
anomalous electron mobilities. The classical electron mobility
is written as
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where em stands for the mobility of non-magnetized electrons
as e m v .e e elam = / The anomalous electron mobility is
modelled by a Bohm-type diffusion model as

B16
, 13,ano

Bm
a

=^ ( )

where Ba is designated as the Bohm diffusion coefficient
herein.

The Bohm diffusion coefficient αB is given empirically
as a function of the axial position. Several models have been
proposed for the distribution of Ba [20]. For this study, the
three-region model [21] is adopted, where Ba =0.14 near the
anode, Ba =0.02 around the channel exit, and Ba = 0.7 in
the plume region. These values are interpolated using the
Gaussian functions [5] to obtain a smooth axial distribution
of .Ba

2.3. Numerical method

2.3.1. Strang splitting. The nonlinear Vlasov equation with
ionization source term in equation (3) can be split into a series
of linear partial differential equations through Strang splitting
[22]. The following steps are performed in one time loop:

(1) Solve the ionization f S 0t ion¶ - = with time step tD .
(2) Calculate f v f 0t x x¶ + ¶ = with time step t 2D / .
(3) Update the electric field and electron temperature

through the fluid model.
(4) Calculate f eE m f 0t x ti¶ + ¶ =/ with time step tD .
(5) Repeat step 1.

2.3.2. CIP-CSL scheme. This study used the SL method to
solve the linear advection equations which are presented in the
preceding subsection. To maintain the mass conservation and
balance the flux between each grid, the CIP-CSL approach is
used [23]. The SL method is a grid-based approach. Therefore,
it includes numerical diffusion in the velocity distribution. A
fourth-order WENO limiter is incorporated with the CIP-CSL
method to achieve high resolution in the velocity distribution
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while maintaining the small numerical oscillation.
Additionally, the CIP-CSL method is known to compute the
phase speed of high-wavenumber components accurately in
wave propagation analysis [24]. This property is anticipated as
especially beneficial for plasma oscillation analysis.

2.3.3. Numerical method for electron fluid. The space
potential f and electron temperature Te are obtained through
the electron fluid model. The diffusion equation in equation (9)
is solved for .f The diffusion terms for f and pressure are
discretized using central differencing. A direct matrix-inversion
method is used to obtain the f distribution from the discretized
equation set. The energy conservation equation in equation (10)
is used to derive T .e The convection term of enthalpy flow is
discretized using a second-order upwind method. A minmod-
type flux limiter is used to gain the stability of the calculation.
The diffusion term of heat conduction is discretized by second-
order central differencing. The second-order differencing
methods are used in the electron fluid model because the
distributions of the plasma parameters such as n ,e T ,e and ,f are
smooth in the x- (axial-) direction in HTs. Equation (10) is
treated as a time-dependent equation. Time integration is
implemented using a fully implicit method.

Equations (9) and (10) are calculated iteratively to obtain
f and T .e The time step for the electron fluid is set to one-tenth
of the time step for ions and neutral particles, i.e. ten electron
sub-loops are used in a single time step for heavy particles.
The electron mobility is calculated only in the first electron
sub-loop. The computational grid in the 1D space for the
electron fluid is the same as that for the Vlasov equation
solver for ions and neutral particles.

3. Verification of the Vlasov solver

3.1. 1D scalar wave propagation problems

The 1D scalar wave propagation problems are solved to verify
the designed order of accuracy in the Vlasov equation solver.
The SL method includes a series of advection-equation cal-
culations. Each calculation can be checked through a scalar
advection problem. Sinusoidal and square wave propagation
problems with periodic boundary conditions are selected as
test cases. In the sinusoidal wave propagation problem, the
order of space accuracy is checked by comparing the num-
erical results with the analytic solution. The time step is set to
be sufficiently small so that the discretization error deriving
from the time-derivative term is negligibly small. Table 1

presents results of error analysis for this problem. The L2

norm of error decreases as O x .4D( ) The fourth-order of
accuracy designed by the WENO limiter is confirmed. The
square wave propagation problem is solved to examine
unexpected overshooting or undershooting. Figure 1 presents
results of the square wave propagation problem obtained
using the Vlasov equation solver with the fourth order WENO
scheme and second order scheme. For the WENO limiter
result, the original square waveform is maintained well. No
overshooting or undershooting is observed in the result. As a
reference, the same problem is solved with the total variation
bounded (TVB) type limiter [17]. Results obtained with the
TVB limiter indicate that the waveform is distorted by the
numerical diffusion near discontinuities. Test problems of the
scalar advection problem confirmed that the developed Vla-
sov equation solver produces non-oscillatory results with a
high order of accuracy.

3.2. Vlasov–Poisson (VP) system

In this subsection, the CIP-CSL with a fourth-order WENO
limiter is applied to the Vlasov equation in the VP system.
The periodic boundary conditions are applied in the space
direction. Impermeable wall boundary conditions are applied
in the velocity direction. The 1D Poisson equation is solved
through a direct integral method. The VP equation system is
presented below.
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here the sign of electric field in equation (15) is negative
because the electron is handled in the VP system [25],
whereas the ion number density is assumed to be uniform.
Because this system handles only electrons, the model is
not equivalent to a full PIC model nor a hybrid PIC model.

Table 1. Order of accuracy for 1D sinusoidal wave propagation.

Number of grids L2 norm Order

10 3.02 10 4´ -

20 1.30 10 5´ - 4.04
40 5.71 10 7´ - 4.01
80 2.53 10 8´ - 4.00
160 1.12 10 9´ - 4.00

Figure 1. Numerical results of 1D square wave propagation with
fourth order WENO and second order TVB limiters.
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However, this system has been conveniently used for the
verification of Vlasov equation solvers for plasma simula-
tions. The calculation domain is x k0 p  / and

v2 2 .xp p-   The grid number reads 48 points in the x
direction and 100 points in the vx direction.

3.2.1. Weak Landau damping. The initial condition of weak
Landau damping for VP system is

f x v t kx
v

, , 0
1

2
1 cos exp

2
, 16x

2

a= = + -⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ( )) ( )

with 0.01,a = a different wave number k is tested. The time
history of electric field’s L2 norm is presented in figure 2. The
analytical damping rate is presented in the figure with a dash
line (k 0.3, 0.0126,g= = - k 0.4, 0.0661,g= = -
k 0.5, 0.1533g= = - ). In all cases, the Vlasov model
solves the electric field damping, which matches the
analytical decay rate [26].

3.2.2. Two stream instability. To investigate how the noise is
reduced by the Vlasov equation solver, the two-stream
instability problem is simulated. The initial condition reads:

f x v t
v

kx
v

, , 0
2

1 cos exp
2

, 17x x
2 2

a= = + -⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ( )) ( )

where k0.05, 0.5.a = =
For comparison, the same test case is also solved using

the PIC [18] model, and the electric field is solved through the
Poisson solver based on the central scheme. The equation of
motion for each macroparticle is computed using a second-
order leap-frog method. A piecewise linear function is used
for weighting between the particle positions and grid points.
The number of grids in the x-direction is 48. The average
number of macroparticles per cell is 100. The computational
costs are almost equal between the Vlasov equation and
particle solvers when they are solved using sequential
computations. Figure 3 presents numerical results of the
two-stream instability problem. The basic characteristics of
distribution function for both models exhibit the same
tendency. However, the result calculated using the PIC model
includes much statistical noise, whereas the Vlasov equation
solver achieves a noiseless result without overshooting or
undershooting. The benefits of noiseless distribution of the
Vlasov equation solver are confirmed.

4. 1D1V simulation of ionization oscillation in HT

The simulations are running on a 2.9 GHz CPU with 32 GB
memory, the hybrid Vlasov solver spends 1.92 h to finish the
1 ms simulation, meanwhile the hybrid PIC solver which
employs 6000 macroparticles per cell takes 4.20 h. The
calculation process of the hybrid Vlasov-fluid solver is
demonstrated in figure 4, the calculation domain and initial
distribution function are assumed as the input process. In the
beginning, new ions are generated through the ionization
process and added to the ion distribution function. The same
number of particles is eliminated in the neutral distribution
function. Then, ions and neutrals are advected by the Vlasov
equation solver for half physical time step in space. Notice

Figure 2. Time history of electric field in L2 norm, with wavenumber
of (a) k=0.3, (b) k=0.4, and (c) k=0.5.
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Figure 3. Numerical results of temporal distribution functions obtained using the (a) Vlasov equation solver and (b) PIC solver at t=30 s.

Figure 4. Flowchart of the hybrid Vlasov-fluid solver for HTs simulation.
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that neutral particles only have a single velocity, it does not
propagate in the velocity space. Then the ion and neutral
number densities are generated by integrating ion and neu-
tral’s distribution function. These parameters are transferred
into the electron fluid solver to calculate space potential f and
electron temperature Te iteratively. Once f is updated, the
electric field is updated. Finally, the ions and neutrals are
propagated for a fully physical time step in v direction and
another half physical time step in x direction. The hybrid PIC
solver used in this study is the same as Dr Kawashima pre-
sented in [18], and this is the reduced one-dimension version
of the two-dimensional model. The equation of motion for
each macroparticle is computed using a second-order leap-
frog method. A piecewise linear function is used for
weighting between the particle positions and grid points.

4.1. Calculation conditions

The Vlasov equation solver is coupled with the magnetized
electron fluid model for a HT simulation. The simulation
target is the HT developed at The University of Tokyo [27].
An axial 1D1V simulation is performed. The thruster opera-
tion parameters assumed for the simulation are presented in
table 2. An axial distribution of magnetic flux density is
assumed based on the measured data. The schematic of the
HT calculation domain and the magnetic field distribution are
portrayed in figure 5. The calculation domain contains the
anode, discharge channel, and plume regions. The left-hand
and right-hand side boundaries respectively correspond to the
anode and cathode. The hollow anode model used in this

study is the same as [28]. To reflect the effect of the hollow
anode in the simulation, the artificial electron mobility is
employed in the region inside the hollow anode
( x10 mm 0 mm- < < ). That is, the collision frequency
inside the hollow anode is changed form vcol to v1 .HA cola+( )
Here, the hollow anode parameter 1HAa = is used.

After the propellant gas of xenon is injected into the domain
from the left-hand side, it is ionized in the domain, and ejected
from the right-hand side boundary. In the grid-based Vlasov
equation solver, the minimum and maximum velocities are set
respectively to −5 km s−1 and 18 km s−1. 192 grids are used in
the velocity domain; 48 grids are used in the space domain. The
time step is set to 1 ns to satisfy the CFL condition for the
Vlasov equation solver. With this time step, the CFL numbers
are calculated as 0.04 and 0.06.v t

x

eE t

v
x x

x

, max , max= =D
D

D
D

4.2. Boundary conditions

For the inlet and outlet boundary condition, the particles that
flow into the calculation domain with u 0> at x 0= and
u 0< at x L,= where x 0= is the left-end and x L= is
right-end of the calculation domain. If the shape of the dis-
tribution function is smooth, simply Lagrange polynomial
with the same order of the scheme can be used for the
extrapolation to keep the same resolution at the boundary.

The boundary condition in v direction is simply to
implement if the upper boundary and lower boundary are
large enough. The distribution function at the boundary will
become zero since there are no particles near each velocity
boundary. The Dirichlet boundary condition can be set as zero
in the ghost cell and Neumann condition can also be set as the
gradient equal to zero.

The boundary conditions for space potential f and
electron temperature Te are set for calculating the electron
fluid. The Dirichlet condition of f=250 V is used at the left-
hand side boundary at x=−10 mm to apply the discharge
voltage, and f=10 V is assumed at the right-hand side as
the beam plasma potential. Te is assumed to be 3 eV at the
right-hand side boundary, and the Neumann condition of

T xe¶ ¶/ =0 is used at the left-hand side to make the heat
conduction flux zero on the anode.

One of the features of the thruster with anode layer used
in the present study is the hollow anode. The hollow anode
model used in this study is the same as [28]. To reflect the
effect of the hollow anode in the simulation, the artificial
electron mobility is employed in the region inside the hollow
anode (−10 mm<x<0 mm). That is, the collision fre-
quency inside the hollow anode is changed form vcol to

v1 .HA cola+( ) Here, the hollow anode parameter 1HAa =
is used.

4.3. Comparison of computed results by Vlasov solver and
conventional PIC Solver

During HT operation, ionization oscillations at frequencies of
several tens of kilohertz are often observed. They have been
investigated using several numerical models [29–32]. This
study examines the reproducibility of the characteristics of

Table 2. Parameters for thruster operation assumed in the simulation.

Operation parameters Values

Mass flow rate 3.35 mg s−1

Propellant gas Xenon
Discharge voltage 250 V
Channel cross-sectional area 2035 mm2

Channel length 12 mm
Inlet gas temperature 650 K

Figure 5. Axial-radial schematic of the Hall thruster considered in
the present 1D simulation. The 1D calculation domain and magnetic
field distribution are presented.
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ionization oscillation using the developed Vlasov-fluid
model. As a reference, a hybrid particle-fluid [18] simulation
has also been performed. The obtained characteristics of
ionization oscillation are compared between the hybrid Vla-
sov-fluid and hybrid PIC-fluid models.

4.3.1. Ionization oscillation. The oscillation amplitude Δ of
discharge current is used as a criterion for the ionization
oscillation.

I N
I I

1 1
. 18

i

N

d 1
d,i d

2
0.5

åD = -
=

⎡
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⎤
⎦⎥

( ) ( )

In that equation, Id represents the time-averaged
discharge current, Id,i stands for the time varying discharge
current, and N denotes the number of samples.

Figure 6 presents discharge current oscillation and
oscillation amplitudes over time for the case in which
B 16 mTr, max = with classical diffusion. Here, anomalous
electron mobility is not used. The calculation grids for the
Vlasov solver are 48 grids in space and 192 grids in velocity.
The hybrid PIC solver is calculated on the domain of 48 grids.
The number of macroparticles is 6000 per cell, which is the
minimum macroparticle number for a converged calculation.
The Vlasov solver achieved a quasi-steady state oscillation
mode with constant oscillation amplitude in a very short time.
However, in results obtained from a hybrid PIC simulation,
the oscillation amplitude is not stable because of the static
noise. It is difficult to judge if the simulation reaches a quasi-
steady state of coherent waveforms. This unstable oscillation
amplitude continues for a long time even if the simulation is
performed as exceeding 1 ms. The Vlasov solver generated a

steady oscillation waveform within the 1 ms simulation. The
convergence speed for the steady oscillation amplitude is
presented in table 3. In addition to the slow convergence
speed, the computational cost (CPU seconds) for a given
period of simulation is large when using the hybrid PIC
method. This high cost is attributable to the large macro-
particle number used for the simulation. In fact, the number of
macroparticles in the simulation domain is less than 100
during low Id, although the average macroparticle number is
approximately 6000. During low Id, most of the ions are
exhausted. Neutral particles are depleted. Consequently, the
number of particles in the hybrid PIC method cannot be
decreased. The computational cost becomes large.

Here the macroscope plasma properties are calculated by
taking the velocity moments of the VDF:

n t f tx x v v, , , d 19ò=
-¥

+¥
( ) ( ) ( )

u t n f tx v x v v, , , d 201ò= -

-¥

+¥
( ) ( ) ( )

t n m f tx v x v v,
1

2
, , d , 211 2òe = -

-¥
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( ) ( ) ( )

where n is the number density, u is the mean velocity and e is
the mean energy. As quasi neutral assumption is employed,
the space potential f and electron temperature Te are
calculated from the electron solver.

Figure 7 presents the time-averaged plasma properties of
the solvers. The plasma properties generated by the hybrid
Vlasov-fluid solver (square marker) show a similar distribu-
tion as the hybrid PIC solver (star marker). The space
potential and electron temperature distribution show a good
agreement between the two solvers, which guaranteed the

Figure 6. Time histories of the (a) discharge current and (b) oscillation amplitude with the classical diffusion coefficient.

Table 3. Vlasov solver and hybrid PIC solver convergence speeds.

Solver Grids and particles CPUs for 1 sm calculation Convergence time

Hybrid Vlasov 48×192 grids 6.92 s 0.25 ms
Hybrid PIC 48 grids in space and 6000 particles per cell 15.1 s More than 1 ms
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similar mean velocities in each cell, these parameters may
affect the total performance of HTs. The hybrid Vlasov-fluid
solver also calculates the accelerate region correctly in
comparison with the hybrid PIC solver. The plasma
behaviours during the ionization oscillation are fundamentally
the same for the two solvers.

4.3.2. Oscillation amplitude. Figure 8 presents discharge
oscillation amplitude changes with different peak magnetic
flux densities. Both the hybrid Vlasov-fluid solver and hybrid
PIC solver show a trend that is similar to that observed in the
experiment [33], although the PIC solver simulation collapsed
when the maximum magnetic flux density was less than 15
mT in the classical diffusion case and 12 mT in the Bohm
diffusion case because, when hybrid PIC solver runs in the
low magnetic flux density region, the neutral number density
becomes extremely small at the peak discharge current
timing, resulting in divergence of the electron fluid solver.
In this case, the hybrid PIC solver is unable to generate
reasonable results with this number of macroparticles. By
contrast, the Vlasov solver shows stable reproducibility in a

wide magnetic flux density range, even with the same
computational cost.

This work is the first step of hybrid Vlasov-fluid solver
for Hall thruster simulation. We plan to go on with the 2D2V
simulation to study the azimuthal rotating spoke and electron
drift instability in the future.

5. Conclusions

In this study, we developed a hybrid Vlasov-fluid model for the
ionized plasma flow. By replacing the particle solver for heavy
particles with a SL Vlasov solver, a noiseless result was
achieved with rapid convergence speed. For the Vlasov equation
solver, the CIP-CSL method with fourth-order WENO limiter is
employed to achieve high spatial resolution and non-oscillatory
simulation. The fourth-order accuracy in space and non-oscil-
latory properties was verified using 1D scalar test problems. Test
case of the VP system was used to verify the Vlasov solver. The
noiseless feature was demonstrated with two-stream instability.

A 1D1V simulation was performed for ionization oscil-
lation analysis of HT. The trend of oscillation amplitude along
with the magnetic flux density reproduces the trends observed
in experiments. The noiseless Vlasov-fluid model yields quasi-
steady oscillation mode with a constant amplitude within a
short simulation time compared with the hybrid PIC model.
Furthermore, the Vlasov-fluid model shows a wider calculation
range than that of the hybrid PIC solver in the low magnetic
flux density region. The proposed SL Vlasov solver presents
the benefit of resolving short wavelength oscillation. It is
expected to be applicable to multi-dimensional simulations
such as sheath problems and plasma drift instability problems.
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Figure 7. Time-averaged plasma properties, left: neutral and ion number density, right: space potential and electron temperature, calculated
with classical diffusion coefficient, B 16 mT.r, max = Square: hybrid Vlasov-fluid solver, Star: hybrid PIC solver.

Figure 8. Simulation results of discharge oscillation amplitude.
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