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Abstract

Machine learning research and applications in fusion plasma experiments are one of the
main subjects on J-TEXT. Since 2013, various kinds of traditional machine learning, as well
as deep learning methods have been applied to fusion plasma experiments. Further
applications in the real-time experimental environment have proved the feasibility and
effectiveness of the methods. For disruption prediction, we started by predicting disruptions
of limited classes with a short warning time that could not meet the requirements of the
mitigation system. After years of study, nowadays disruption prediction methods on J-TEXT
are able to predict all kinds of disruptions with a high success rate and long enough warning
time. Furthermore, cross-device disruption prediction methods have obtained promising
results. Interpretable analysis of the models are studied. For diagnostics data processing,
efforts have been made to reduce manual work in processing and to increase the robustness
of the diagnostic system. Models based on both traditional machine learning and deep
learning have been applied to real-time experimental environments. The models have been
cooperating with the plasma control system and other systems, to make joint decisions to
further support the experiments.
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(Some figures may appear in colour only in the online journal)

1. Introduction higher accuracy and speed beyond the human level. A large
amount of scientific research is data-heavy, which means a
huge amount of data is produced through experiments and

simulations. Thus, machine learning is a quite suitable tool in

Machine learning has been the subject of extensive studies in
scientific research lately. Recent advances in computing

power have promoted machine learning, especially deep
learning applications in many fields. Today’s deep learning
models are powering many commercial applications with

1009-0630/22/124003+12$33.00

scientific research. It can not only free researchers from
tedious data processing tasks but it can also discover new
phenomena or even new laws. Deep learning methods and
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applications have already been widely used in biology [1],
materials [2], high energy physics research [3], as well as
other fields.

Fusion plasma research is another field where machine
learning has bloomed in recent years. Machine learning was
applied to fusion plasma research a long time ago. In 1996,
researchers from TEXT-U tried to use a preliminary neural
network to predict disruptions [4]. Limited by the computing
power and data volume available at the time, the neural net-
work which was applied in disruption prediction used only a
few layers and was only able to predict some classes of dis-
ruption. However, it revealed the ability of neural networks to
predict disruptions for the first time. With the development of
computing power, researchers from Harvard and the Prince-
ton Plasma Physics Laboratory (PPPL) from Princeton Uni-
versity, have used deep neural networks and have achieved
promising results in disruption prediction with high accuracy
[5]. Today, disruption prediction remains the most active
subject in machine learning fusion plasma research. Another
emerging application of machine learning fusion plasma
research is reinforcement learning in plasma control. The
DeepMind team together with the TCV tokamak have
developed a reinforcement learning plasma control archi-
tecture [6]. The plasma controller is end-to-end, which means
that no more equilibrium design is needed when designing a
new plasma configuration. This will make it much easier for
tokamak operators. In addition, there are also many other
machine learning applications in tokamak diagnostics data
processing and plasma simulation [7-11].

Machine learning in fusion plasma research is a major
subject on J-TEXT tokamak. The article will give a com-
prehensive review of machine learning research on J-TEXT.
One of the most investigated subjects is machine learning-
based disruption prediction, which will be presented in
section 2. In section 3, machine learning applications on
diagnostics data processing are presented. In section 4,
machine learning methods, which were implemented in real-
time and applied in actual J-TEXT experiments, are pre-
sented. A summary is described in the last section.

2. Machine learning in disruption prediction

Disruption is a catastrophic loss of tokamak plasma con-
finement and is a great obstacle to overcome for successful
and stable operations in future tokamaks [12-17]. Disruptions
will cause strong electromagnetic forces, heat loads, and
runaway electrons during the thermal and current quench
phase, which will do great harm to the structure of the tok-
amak. Thus, disruptions at high-performance discharge are
unacceptable, especially for future fusion reactors. In order to
alleviate the aforementioned harm caused by disruptions,
disruption prediction, prevention and mitigation are of great
importance. Basically, all current disruption prevention and
mitigation systems require a time scale of several milli-
seconds to be fully effective. The key for the systems to take
effect is to accurately predict the impending disruptions with
sufficient warning time for the actuators to work. However,

the physical mechanism of disruption is still not clear enough.
Rule-based methods are not likely to reach a promising result
and are not fully capable of using all information contained
by the diagnostics of the tokamak. Data-driven methods seem
to be able to handle the problem. Based on a large amount of
data and proper machine learning techniques, the methods are
able to recognize various kinds of disruptions at high accur-
acy and are even able to discover relations to disruptions that
were not previously found.

Research on predicting disruption has been carried out
since the 1990s. Except for the neural network disruption
predictor realized on the TEXT-U tokamak in 1996 [4],
JET also explored disruption prediction methods based on
neural network and novelty detection techniques [18]. A
neural network disruption predictor designed for the high-beta
limit was composed on the DIII-D tokamak in 1997 [19]. The
JT-60U tokamak realized a neural network-based disruption
predictor in 2003 [20]. A new criterion for predicting dis-
ruptions was put forward in HL-2A in 2006 [21]. Machine
learning-based disruption prediction is also one of the main
subjects on J-TEXT. With years of development and further
research, disruption prediction has become a featured
advantage on J-TEXT.

2.1. Predicting disruptions caused by locked modes

The first attempt to predict disruptions was carried out in 2013
on J-TEXT. A neural network model was established to
predict disruptions caused by locked modes [22]. The model
took Mirnov coils and locked mode signals as inputs to better
focus on locked mode-induced disruptions. The regression
model was based on a fully connected neural network and
took three hidden layers’ topology, which is illustrated in
figure 1. According to the statistics, a success rate of 90% was
reached and only two discharges disrupted induced by locked
modes were not predicted due to a short flattop phase. For
intrinsically locked mode disruptions, a warning time of about
1 ms ahead of the locking time could be given. For disrup-
tions caused by resonant magnetic perturbations (RMPs)
locked modes [23], a warning time of 10 ms could be given.
This work for the first time validated the feasibility of pre-
dicting disruptions on the J-TEXT tokamak and proved that
neural network-based methods are capable of detecting dis-
ruption precursors.

2.2. Predicting disruptions caused by density limit

Disruption induced by density limit is another major type of
disruption on the J-TEXT tokamak. A neural network-based
density limit predictor was first developed for predicting
disruptions induced by density limits [24]. By targeting a
specific disruption type, it was easier for the neural network
model to detect the related disruption precursors. In this work,
rather than predicting the probability of an incoming disrup-
tion, the neural network model tried to estimate the current
density limit value so that the plasma control system (PCS)
could use the estimated density limit as a reference to avoid
the density limit while operating as close as possible to the
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Figure 1. Topology of the neural network model designed for predicting locked modes induced disruptions. The model used Mirnov signals
and other locked mode signals as input, and alarming of the locked mode as output. (Reproduced from [22]. © IOP Publishing Ltd. All rights

reserved).

limit. The method performed well in the offline test, suc-
cessfully predicting 82.8% of the density limit disruptions
with a warning time of over 4 ms. Moreover, if the predicted
density limits were fed to the density feedback controller to
optimize the experimental density, more than 95% of density
limits induced disruptions could be avoided. The results
obtained showed that the designed network was suitable for
online density limit avoidance and could be implemented in
the J-TEXT tokamak control system to help avoid or mitigate
density limit disruptions with improvement in the warning
time prior to disruptions.

Further investigation on predicting disruptions caused by
density limits was carried out [25]. The method labeled all
non-density limit disruptions as negative samples, expanding
the training set dramatically. It also no longer used a simple
fully connected neural network but designed and applied a
two-stage hybrid neural network. The first stage was a time
series neural network used to predict future density, while the
second was a fully connected neural network used to predict
the density limit disruption probability. The two networks
were trained separately and were combined as a whole at the
inference stage. The predicted density which was given by the
first neural network was fed into the second neural network as
one of the inputs. With the improved two-stage hybrid neural
network, the warning time performance was significantly
improved by about 30 ms ahead, and the true positive rate was
increased by 5%—10% at the same time. The performance
comparisons between the hybrid neural network and the
neural network without predicting the density limit are shown
in figure 2. Furthermore, to reach a higher true positive rate
and a lower false positive rate, the inputs of the second stage
neural network were reselected to cover profile information of

the radiation signals. A performance comparison between
inputs with and without profile information is shown in
figure 3. The true positive rate was greatly improved using the
information from the radiation profile. The neural network
finally reached a true positive rate of over 90% and a false
alarm rate of less than 10%, with an average warning time
longer than 30 ms. The model was then realized in the real-
time environment in J-TEXT experiments to avoid density
limit disruptions, which would be described in detail in
section 4. The work further proved that neural network
methods were capable of extracting and predicting disruption
precursors, and first implemented disruption prediction in the
real-time experimental environment to help make joint deci-
sions with the plasma control system (PCS) to realize dis-
ruption avoidance and mitigation.

2.8. Predicting disruptions using a deep learning-based
anomaly detection technique

As machine learning-based disruption prediction methods
need abundant data for training and inferencing, it is neces-
sary to develop a database built with disruption-related
information. The database should also be able to generate
clean and labeled datasets conveniently. With this aim, a
database designed specifically for machine learning-based
disruption predictors was developed [26]. The structure of the
database is shown in figure 4. All data from any tokamak
devices could be transferred to a standard format and saved as
HDFS files. Labels as well as other metadata of each dis-
charge could be stored in MongoDB. Information about each
discharge was able to be added, removed, checked, and
changed with ease.
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Figure 2. Overall comparisons of the two neural networks with and without density prediction. In the upper part, the red and magenta lines
represent successful and false alarm rates with and without density prediction, respectively. In the middle part, the blue, cyan, and black lines
represent premature, tardy, and missed alarm rates with and without density prediction, respectively. In the lower part, the black lines indicate
average warning times with and without density prediction. (Reproduced from [25]. © IOP Publishing Ltd. All rights reserved).

Based on the disruption database above, disruption pre-
diction based on deep learning anomaly detection was
investigated [27]. One problem with disruption prediction is
that, for future tokamaks, it is almost impossible to obtain
enough disruptive discharges for training a data-driven model,
because large tokamaks can hardly bear any disruptive dis-
charges without damaging themselves. Thus, the method
applied one-class data along with its label for training, which
was the non-disruptive class. Considering that most dis-
charges with locked mode will finally lead to disruptions, a
hybrid neural network was designed to predict the value of
the signals which were related to locked modes 20 ms later
from current inputs. The model combined CNNs (Convolu-
tional Neural Networks) with LSTMs (Long-Short Term
Memory neural networks) together. The 2D convolution
layers were designed to extract high-frequency features from
the Mirnov array, while the features were then concatenated
with other low-frequency signals and were fed into LSTM to
predict future information of the locked mode. With the
hypothesis that most disruptive discharges are induced by
locked mode, which hardly appears in non-disruptive dis-
charges, the differences in the predicted locked mode between

disruptive and non-disruptive discharges were supposed to be
significant. An outlier factor was calculated based on this
principle to identify whether the discharge is disruptive or not.
As a result, the method reached a true positive rate of 83%
and a false positive rate of 18%, with an average warning time
of 36 ms. Typical predictions of disruptive and non-disruptive
discharges are shown in figure 5. Different from the pre-
viously mentioned models, which predicted a specific type of
disruption, the method was designed to predict general types
of disruptions on J-TEXT. Moreover, it used only the non-
disruptive discharges for training, which attempted to solve
the problem of not having enough disruptive discharges for
training in future tokamaks.

2.4. Predicting disruptions across different tokamaks using a
transfer learning technique

Research on predicting disruptions across different tokamaks
was carried out and promising results were obtained on the
J-TEXT and the EAST tokamak [28]. Basically, a disruption
predictor consists of a feature extractor and a classifier. The key
is to design a feature extractor that is able to extract general
features across different tokamaks. A deep learning-based
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Figure 3. Overall comparison of the two neural networks with and without profile information. In the upper part, the red and magenta lines
represent successful and false alarm rates with and without density prediction, respectively. In the middle part, the blue, cyan, and black lines
represent premature, tardy, and missed alarm rates with and without density prediction, respectively. In the lower part, the black lines indicate
average warning times with and without density prediction. (Reproduced from [25]. © IOP Publishing Ltd. All rights reserved).
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Figure 4. The structure of the disruption database. Device specific database will be converted to a standard format and stored as an HDFS5 file.
Different plugins will be loaded in the Label Generator to analyze each diagnostic and will generate corresponding labels. The labels and other
disruption-related information will be stored in MongoDB for further usage. (Reprinted from [26], Copyright (2020), with permission from Elsevier).

fusion feature extractor was first designed by combining CNNs

and LSTMs together, namely the Fusion Feature Extractor
(FFE), which is shown in figure 6.

CNNs were designed to extract temporal features with

higher characteristic frequencies as well as spatial features

containing profile information. Considering that each kind of
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Figure 5. The predicted locked mode signal and the outlier factor of a typical non-disruptive and disruptive shot. The solid lines represent
measured signals while the dashed lines represent predicted signals. Predictions of the non-disruptive shot #1052938 fit measured signals
well and have a low outlier factor. Predictions of the disruptive shot #1052583 fit well at first, but worse when approaching the disruption.
The outlier factor also improves simultaneously. (Reproduced from [27]. © IOP Publishing Ltd. All rights reserved).
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Table 1. Training data, strategy, and performance composition of all cross-tokamak experiments using pre-trained J-TEXT model and the
EAST tokamak as the target tokamak to predict disruptions. The performance is measured by the AUC (Area Under the receiver operating
characteristic Curve) value. Values in parentheses give the number of disruptive discharges.

Case No. J-TEXT data EAST data  Training strategy  Transfer strategy AUC
1 None 1896 (355) From scratch / 0.821
2 None 20 (10) From scratch / 0.615
3 494 (189) 20 (10) From scratch / 0.661
4 None None Pre-trained / 0.611
5 None 20 (10) Pre-trained Freeze & fine-tune 0.808
6 None 20 (10) Pre-trained Freeze & replace classifier 0.749
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Figure 7. F-score from the test set of J-TEXT of disruption
predictors based on SVM with feature engineering and FFE with
different sizes of the training set. The performance of the FFE
gradually improves and finally catches up with and outperforms that
of the SVM with manual feature engineering as the training data
accumulates.

diagnostic represents a different physical meaning, parallel
1D convolutional layers were applied so that the diagnostics
with different meanings would not be mixed together. Fur-
thermore, since different features bear different time scales
and typical frequencies, different sampling rates and time-
window lengths were applied for feature extraction to fit their
own time scales. The features extracted by CNNs and other
signals with larger time scales together consist of a feature
frame, and were then fed into LSTMs for further feature
extraction. Finally, the extracted features were sent to a fully-
connected based disruption classifier to tell if the sample was
disruptive or not.

The feature extractor was first tested on the J-TEXT
tokamak, reaching a true positive rate of 96.36% and a false
positive rate of 9.01%. Furthermore, a comparison between
deep learning-based feature extraction and physics-guided
manual feature extraction was made. Comparisons between
different sizes of training sets applied to both methods were
also compared, as shown in figure 7. With a small amount of
training set fed to both models, manual feature engineering
performed better than the deep learning method but was still
not able to offer a satisfying result. As the data for training
accumulated, the performance of both models gradually

evolved, and the performance of the deep learning model
finally overtook manual feature extraction.

The pre-trained model was then transferred to the EAST
tokamak using a freeze fine-tune technique. The bottom lay-
ers that were designed to extract general features were frozen,
while the top layers were device-specific and are supposed to
be fine-tuned with data from the EAST tokamak. As a result,
the transferred model trained with 10 disruptive and 10 non-
disruptive discharges reached a similar performance to the
model trained with 355 disruptive and 1541 non-disruptive
discharges. Training data, strategy, and results are shown in
table 1.

2.5. Interpretability research for disruption prediction models

Machine learning methods are usually considered as black-
box methods, which means that they are so complex that they
are not straightforwardly interpretable to humans in most
cases. It is often the case that, machine learning methods are
able to achieve promising results. However, the physical
mechanisms are hidden between the parameters and can
hardly be explained. Interpretability research for disruption
prediction models may help to better understand how the
models make decisions, and may also reveal new phenomena
undiscovered before.

A new methodology for cross-machine study to find out
what impacts the cross-machine predictor model building and
to have a better understanding of the predictor was explored
[29]. A new machine learning algorithm called LightGBM
and a model interpretability tool SHAP (SHapley Additive
exPlanations) were utilized to provide good performance
prediction and enough analysis by applying to two different
devices J-TEXT and HL-2A. The superiority of LightGBM is
that it provides relative feature importance to analyze the
differences between the two devices. To guarantee more
detailed information on how the model made the prediction,
the SHAP module was used to decompose each prediction
into the contributions of each feature. A proposed general
approach was to estimate the feature importance of two
models which were trained from two different devices. For
J-TEXT, the most important feature is the electron density,
followed by soft x-ray (SXR) and radiated power, as shown in
figure 8. On HL-2A, the most important feature is soft x-ray,
followed by electron density and radiated power, as shown in
figure 9. The models for the two devices were trained with
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respectively. (Reproduced from [27]. © IOP Publishing Ltd. All
rights reserved).

different sets of diagnostics because they did not have the
exact same set of diagnostics. The models predicted disrup-
tions well on both machines, respectively. However, the
model had different judgments on the importance of features.
The deep analysis of feature contribution for disruption was to
find out the precursor of disruption, as shown in figures 10
and 11. When the disruption precursor approached, the
models correctly extracted it and the feature contribution
reflected this. The SHAP graph focused on the disruption
discharges and the result may have some difference when
compared with figures 8 and 9. Combined with these results,
it can be confirmed that the disruption types in the two
databases are different.

In addition to the aforementioned work, an interpretable
disruption predictor based on physics-guided feature extrac-
tion called IDP-PGFE (Interpretable Disruption Predictor
based on Physics-Guided Feature Extraction) was developed

J-TEXT #1047124

SHAP value

°l . . . . C
-80 -60 -40 -20 0
time until disruption(ms)

Figure 10. The SHAP value of 4 signals on J-TEXT varies over time
and the precursor before disruption in 2 obvious signals: (b) soft
x-ray radiation, (c) Mirnov signal. (Reproduced from [27]. © IOP
Publishing Ltd. All rights reserved).
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Figure 11. The SHAP value of 3 signals on HL-2A varies over time
and the precursor before disruption in 2 obvious signals: (b) electron
density, (c) soft x-ray radiation. (Reproduced from [27]. © I0OP
Publishing Ltd. All rights reserved).

and applied on J-TEXT [30]. IDP-PGFE consists of a feature
extractor, a disruption classifier, and an explainer, which is
shown in figure 12. PGFE as a feature extractor extracts
features with the inductive bias from the raw diagnostic sig-
nals based on the comprehension of phenomena. DART
(Dropouts meet Multiple Additive Regression Trees) as a
disruption classifier is a tree-based model using the trick of
the dropout, which can reduce overfitting. SHAP as an
explainer is an attribution approach, which uses a simpler
explanation model as any interpretable approximation of the
black-boxed model.
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Figure 13. The ROC curves of IDP-PGFE trained by raw signals
(DPRS - navy-blue) and different training sizes (100%-deep-red,
60%-green, 40%-yellow, 10%-orange, 5%-light-blue).

PGFE is the core component of IDP-PGFE, which makes
the SHAP value more interpretable for tokamak disruption,
improves the accuracy of the predictor, and lowers the data
requirement of the predictor. IDP-PGFE reaches the best
performance in J-TEXT disruption prediction tasks that are
TPR (True Positive Rate) = 97.27/94.55/90%, FPR (False
Positive Rate) = 5.45% with the tolerance of 10/20/30 ms,
AUC = 0.98. PGFE could also reduce the data requirement
of IDPOP. The ROC curves (Receiver Operating Character-
istic curves) of IDP-PGFE trained by 100%, 40%, and 10%
data size of the training set are shown in figure 13. The
performance of IDP-PGFE using PGFE with only 10% data
size of the training dataset is similar to the performance of
disruption predictor using raw signals (DPRS) with a full
training dataset.

The SHAP values of IDP-PGFE with extracted features
are shown in figure 14. The most contributed feature in

The explainer SHAP could interpret features extracted by PGFE. SHAP value represents the contribution of features.
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Figure 14. SHAP values of IDP-PGFE with extracted features. The
order of the features represents their corresponding contributions,
respectively. The mean of the SHAP value represents the average
impact on model output magnitude. Class 1 represents the
‘disruptive’ impact on the model, while Class O represents the ‘non-
disruptive’ impact on the model.

J-TEXT is the frequency of Mirnov probes, which reflects if
there will appear locked mode. Because J-TEXT is a small-
sized tokamak with a relatively smaller time scale, the locked
mode amplitude is less important than the frequency of
Mirnov probes. The interpretability was studied and also
applied on J-TEXT density limit disruption (DLD) experi-
ments. IDP-PGFE helps physicists to confirm that the appli-
cation of ECRH did not lower the density limit, while the
application of RMPs did raise the density limit. IDP-PGFE
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also has the potential for cross-machine disruption prediction
and real-time disruption prediction.

3. Machine learning in the diagnostics data
processing

Tokamak produces a large amount of diagnostic data each
shot. A large portion of those data needs to be processed
before revealing any physical meanings. Diagnostic data
processing sometimes takes quite a lot of manual work.
However, with the help of the power of machine learning, not
only is the required manual work reduced but also extra
results will be obtained compared with traditional methods.
The reliability of diagnostic systems in tokamak plasma
is of great significance for physics research or even plasma
control systems (PCS). Diagnostics signals are coupled with
each other in tokamaks because the diagnostic systems are
based on various principles and the sights of diagnostics are
from various directions. There are times when the diagnostic
signals are inaccurate because of the limitations imposed by
the principles of the measurements. Given the situation, the
measurements could be estimated or surrogated by other
diagnostics with the help of machine learning methods. On
J-TEXT, the electron temperature signals have been surro-
gated by SXR signals and other basic plasma signals, in case
the diagnostic systems fail to detect plasma temperature. A
fully-connected neural network was developed, utilizing back
propagation with two hidden layers and generalized regres-
sion neural network [31]. The model was utilized to estimate
plasma electron temperature approximately on the J-TEXT
tokamak. The temperature profile was reconstructed by other
diagnostic signals, and the average errors were within 5%.
Another application is to estimate horizontal displace-
ment with an SXR array instead of using magnetic coils when
RMPs are applied [32]. On J-TEXT, the plasma horizontal
displacement is measured by magnetic coils. The coils will
receive a large amount of interference if RMPs are applied,
resulting in an inaccurate measurement. Although the inter-
ference by RMPs can be compensated with the RMPs coil
current, the response of the plasma may introduce uncertainty
to the compensated measurement. The SXR array can be used
to estimate the plasma displacement as well. But instead of
measuring the center of plasma current as the displacement
coils do, the SXR array gives the center of radiation. There is
a large gap between the measured radiation center and the
plasma current center, and the gap between them is not
constant and thus cannot be easily compensated. By training a
neural network regression model that used the SXR array as
input and magnetic horizontal displacement as the target, the
trained model was able to accurately output the horizontal
displacement by central current only using SXR diagnostics.
In addition, it is worth noting that, in order to make the model
more robust and be able to tolerate sensors’ possible mal-
function, all the samples had three randomly selected chan-
nels replaced by random noise during the training process.
This made the trained model able to estimate the horizontal

10

displacement with even up to 3 SXR channels malfunctioned
with no visible performance degradation.

Electron Cyclotron Emission Imaging (ECEI) is a very
powerful diagnostic. But the attenuation of the pixel channels
must be tuned individually to the setup of the experiment. If
the attenuation is not properly set up, the pixel channel will
suffer from saturated or weak signals and will result in bad
images. A module aimed at automatic data cleaning for
J-TEXT ECEI signals based on machine learning was
developed [33]. A 2-stage classifier model was designed and
built, which was able to recognize six types of signal
states: low-attenuation, saturated-background, high-background,
weak signal, zero signal, and normal signal. By observing and
analyzing the signals, three features were extracted manually.
After the feature engineering, traditional machine learning
algorithms like support vector machine (SVM) and random
forest were used to train the classifiers. An accuracy of over
93% was achieved for classifying the aforementioned six signal
states. The module could well indicate the problematic ECEI
signals and could correct the channels with improper attenuation
automatically, which significantly improved the quality of the
image. The module could also provide the basis for further
feedback regulation.

4, Real-time machine learning applications on
J-TEXT

For the machine learning applications in the fusion experi-
ment mentioned above, most of them need to be implemented
in real-time. For example, the disruption prediction model
needs to be run in real-time to trigger the disruption mitiga-
tion system, and the displacement estimation model needs to
provide a real-time displacement value to PCS. The required
control period for the applications above is around 1 ms,
normally the same as the PCS control period. Different
applications use different types of machine learning models.
On J-TEXT, there are both traditional machine learning
models and deep learning models just for disruption predic-
tion. It is necessary to test and validate the feasibility of the
real-time implementations of those models.

The first attempt was done during the density limit pre-
diction and avoidance experiment. In the experiment, the
disruption predictor needed to send a signal to the density
feedback control system to shut the gas puffing valve as soon
as it predicted a density limit disruption was coming. The
inference interval of this model is set at 1 ms. As the model
used here was pretty basic, although it was not a fully con-
nected feedforward neural network, it could be coded as a
series of matrices multiplication. This was implemented in
LabVIEW-RT. The experiment was successfully conducted,
and the density limit disruption could be avoided [25].

But for more sophisticated models, like neural networks
constructed using the popular deep learning framework
TensorFlow, a real-time application cannot be realized in the
same way. On J-TEXT, we have developed a real-time con-
trol framework called J-TEXT Real-Time Framework (JRTF).
It is based on real-time pre-empt patched Linux kernel. Using
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JRTF, we have ported a TensorFlow constructed model, to be
specific to the SXR horizontal displacement estimation model
to a real-time environment. The model depends on the Ten-
sorFlow C++ library to run in real-time. The offline model is
saved as a serialization format and is loaded by the C++
TensorFlow library. The model is able to finish one inference
cycle in less than 200 us. The system was tested in a pig-
gyback experiment on J-TEXT [32]. The reason why we
chose the horizontal estimation model to be implemented in
real-time is that it was a deep neural network implemented by
TensorFlow. Most of our deep learning models, including the
disruption prediction models, are based on TensorFlow. The
successful application of the model proves the feasibility of
applying the TensorFlow-based model in real-time.

We also tried to implement a LightGBM-based tradi-
tional machine learning model using JRTF. It was connected
to the trigger of the MGI value. The machine learning-based
disruption predictor was applied to J-TEXT to confirm the
reliability of integrating disruption prediction and the miti-
gation system. An exploratory experiment was proposed to
estimate the performance of real-time disruption prediction. It
was found that the disruption predictor was able to capture the
precursors of density limit disruption and provide a warning
time of 46 ms to prepare a mitigation system even if the MGI
is offline, as shown in figure 15. When the MGI was prepared
for the discharge, as shown in figure 16, the predictor suc-
cessfully sent the predicted warning to it and only 4 ms was
taken to shut down this discharge. The integrated disruption
prediction and mitigation system proved to be effective when
dealing with density limit disruption.

5. Summary
With the development of machine learning, its applications in

physical experiments have taken off in recent years. On
J-TEXT, machine learning-based research and applications in
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fusion plasma experiments have been one of the main subjects
since 2013. With years of development, great results have
been obtained in disruption prediction and diagnostic pro-
cessing, as well as their applications in real-time experiments.
Some of the models have been used on J-TEXT for rounds of
campaigns to make joint decisions with the PCS and other
systems to further support the dedicated experiments.

On J-TEXT, we first realized avoiding and mitigating
density limit disruptions in real-time experiments based on a
deep learning predictor. In addition, considering that future
fusion reactors, such as ITER, can hardly bear disruption and
thus cannot obtain enough disruptive discharges to train, we
first proposed a disruption prediction model using only nor-
mal discharges. Furthermore, another attempt was carried out
to transfer the pre-trained disruption prediction model to a
larger target tokamak with limited disruption discharges. With
respect to the interpretability of the machine learning-based
models, an exploratory analysis was conducted to better
reveal the decisions made by the models and the physical
mechanisms of the disruption, as well as to discover new
disruption-related phenomena. In addition, with years of
development, the results achieved on J-TEXT have developed
from initially predicting only one kind of disruption, such as
locked mode or density limit-induced disruptions, to nowa-
days predicting all kinds of disruptions. The performance of
the model has been developed from a true positive rate of
~80% and a false alarm rate of ~20% to a true positive rate
of >90% and a false alarm rate of ~10%, also with a warning
time of around 1 ms to over 30 ms.

Machine learning applications have been widely applied
in fusion plasma experiments on J-TEXT tokamak. Promising
results have been blooming in recent years. In the future, we
will proceed to investigate machine learning-based techni-
ques, to further address key problems in fusion plasma
experiments, especially in disruption prediction, to better
support the coming demands of ITER.
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