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Abstract
Numerical simulation on the resonant magnetic perturbation penetration is carried out by the
newly-updated initial value code MDC (MHD@Dalian Code). Based on a set of two-fluid four-
field equations, the bootstrap current, parallel, and perpendicular transport effects are included
appropriately. Taking into account the bootstrap current, a mode penetration-like phenomenon is
found, which is essentially different from the classical tearing mode model. To reveal the
influence of the plasma flow on the mode penetration process, E× B drift flow and diamagnetic
drift flow are separately applied to compare their effects. Numerical results show that a
sufficiently large diamagnetic drift flow can drive a strong stabilizing effect on the neoclassical
tearing mode. Furthermore, an oscillation phenomenon of island width is discovered. By
analyzing it in depth, it is found that this oscillation phenomenon is due to the negative feedback
regulation of pressure on the magnetic island. This physical mechanism is verified again by key
parameter scanning.
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1. Introduction

Tearing mode (TM) instability has been extensively investigated
by researchers in the area of tokamak plasmas in recent decades
[1, 2]. The TM is one kind of current-driven magnetohydro-
dynamic (MHD) instability commonly followed by magnetic
reconnection, which can break up the nested magnetic flux sur-
faces and generate magnetic islands at the corresponding resonant
surface. These magnetic islands can provide a ‘seed’, called a
seed island, for the neoclassical tearing mode (NTM) to grow.
NTM, a pressure gradient-driven MHD instability, is linearly

stable but can be destabilized by helical perturbations due to the
loss of bootstrap current inside the seed island [3]. The onset of
NTM is the principal limitation of the plasma temperature in the
core region [4], owing to the radial ‘shortcut’ transport in the
produced large magnetic island, and one of the main causes of
major disruption [5, 6]. For the sake of economic feasibility, a
high fraction of bootstrap current, up to 80%–90%, is required
for a future advanced tokamak. Since NTM is a high beta
phenomenon, which is proportional to the bootstrap current
fraction, the control and suppression of NTM are of great sig-
nificance for the steady-state operation of tokamak devices [7–9].

Aiming to control the NTM, many research efforts have
been dedicated to resonant magnetic perturbation (RMP)
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[10–16]. RMP has been found to drive additional effects on
magnetic islands in tokamak plasmas. Specifically, the RMP
can produce an electromagnetic torque at the corresponding
resonant surface. Once the electromagnetic torque is suffi-
ciently large to balance the plasma viscosity and inertia tor-
que, the magnetic islands would be compulsorily aligned with
the RMP in an identical frequency, called locked mode (LM)
[17]. For a static RMP, it can be used to test the maximum
tolerance for the residual error field, resulting from the
asymmetry of the tokamak device [18]. As for the dynamic
RMP, it can be utilized to unlock the magnetic island and
maintain a stable toroidal and poloidal rotation [19]. Lately,
experimental and numerical results show that the synergetic
application of RMP and electron cyclotron current drive
(ECCD) is a promising and effective method to control the
NTM [20–22]. The RMP can be used as an auxiliary method
to lock and locate the phase of the NTM, and then to enhance
the accuracy and effectiveness of the ECCD.

In addition to the above application, even if the rotating
plasma is originally stable to the NTM, the RMP can drive
magnetic reconnection and generate a magnetic island at the
resonant surface, called mode penetration [23, 24]. Mode
penetration has raised many concerns since its threshold is
directly related to the onset of TM/NTM. Based on single-
fluid theory, considerable studies have been made in pre-
dicting and explaining the threshold of mode penetration for
different tokamak devices [12, 25–28] and parameter regimes
[29–32]. However, considering the plasma rotation playing a
significant role in the screening process of RMP [33], the two-
fluid model, retaining the electron diamagnetic drift as well as
the E×B flow, is more suitable to account for more complex
physics. Recently, in the frame of the two-fluid drift-MHD
theory, plenty of research was carried out to investigate the
interaction of the RMP and magnetic islands in tokamak
plasmas [34–36]. Using a two-fluid model, Hu et al found that
the two-fluid effects can give significant modifications to the
scaling law of mode penetration for different plasma para-
meters. Besides, the enduring mystery, a non-zero penetration
threshold at zero plasma natural frequency, is explained by
the small magnetic island width when penetrated [37, 38]. In
the recent investigation, numerical results show that the 2/1
NTM can be suppressed by the 4/2 RMPs with moderate
amplitudes if the bi-normal fluid rotation frequency is in the
ion diamagnetic drift direction or sufficiently large [39].

Motivated by the above reasons, based on the two-fluid
model, the screening effects of two components of plasma
flow on mode penetration are investigated in this work.
Taking into account the bootstrap current, a mode penetra-
tion-like process is found by numerical simulation. Further-
more, it is found that the diamagnetic drift flow has a
stabilizing effect on the magnetic islands. An oscillation
phenomenon of island width is discovered in the high
Lundquist number S and high transport scenario.

The rest of this paper is organized as follows. In
section 2, the modeling equations used in this work are
introduced. In section 3, numerical results and physical dis-
cussions are presented. Finally, the paper is summarized and
conclusions are drawn in section 4.

2. Physical model

The initial value code MDC (MHD@Dalian Code) [40–46] is
upgraded to the two fluid versions based on a set of four-field
MHD equations [47]. Taking into account the nonlinear
evolution of the vorticity U, the poloidal magnetic flux ψ, the
plasma pressure p, and the parallel ion velocity v, the nor-
malized equations in the cylindrical geometry (r, θ, z) can be
written as
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where f and j are, respectively, the electric potential and plasma
current density along the axial direction, obtained by the fol-
lowing formulas f= ^U 2 and y= -^j 2 . The equation (1)
(vorticity equation) is the perpendicular component (taking
ez ·∇× ) of the equation of motion, where ν is the viscosity and
τ= Ti/Te is the ratio of ion to electron temperature.
d t= W -2 i a

1( ) is a gyroradius parameter, where Ωi= eB0/mi is
a constant measure of the ion gyrofrequency and
t m r= a Ba 0 0 is Alfvén time. Neglecting the electron inertia
and Hall effect, equation (2) is obtained by combining the
generalized Ohm’s law and Faraday’s law of electromagnetic
induction, where η is the resistivity. e= - ¢qj A B p rb ( ) ( ) is
the bootstrap current [48], where ε= a/R0 is the inverse aspect
ratio, and Bθ is the poloidal magnetic field. A is a constant that
can be calculated by a given bootstrap current fraction

ò ò=f j r r jr rd d
a a

b 0 b 0
. Since the isothermal assumption is

made here, the evolution of pressure is mainly determined by the
particle conservation law. It is basically a transport equation,
considering the convective term, parallel and perpendicular heat
transport. By including the effect of resistive diffusion and the
parallel ion flow, equation (3) is the final energy transport
equation for two-fluid plasma. b m= n T B2e 0 0 e 0

2 is the electron
plasma beta at the location of the magnetic axis, where Te is the
constant electron temperature. χ∥ and χ⊥ are the parallel and
perpendicular transport coefficients, respectively. The equation
(4) is the parallel component of the equation of motion by taking
the dot product of the equation with B, where μ is the diffusion
coefficient of parallel ion velocity. This model can reduce to the
high-beta reduced MHD equations of Strauss [49], by giving the
limit δ→ 0, βe→ 0. New physics appears by introducing the
two factors δ, measuring the finite Larmor radius (FLR) effects,
and βe, measuring the compressibility. If one has δ→ 0 and
Ti= Te, but non-zero βe, the model reduces to the compressible
reduced MHD (CRMHD) equations [50].
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The length l, time t, and velocity v are normalized by the
minor radius a, Alfvén time τa and Alfvén speed

m r=v Ba 0 0 , respectively. The poloidal magnetic flux ψ,
electric potential f and plasma pressure p are normalized by
aB0, aB0va and the pressure at the magnetic axis, respectively.
The normalization of the diffusion coefficients is as follows,
η, ν, μ, χ∥, χ⊥ are normalized by μ0a

2/τa, a
2/τa, a

2/τa,
a2/τa, a2/τa, respectively. The Poisson brackets in
equations (1)–(4) are defined as
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Each variable f (r, θ, z, t) in equations (1)–(4) can be written in
the form q= +f f r f r z t, , ,0 ( ) ( ) with f0 and f being the
time-independent initial profile and the time-dependent per-
turbation, respectively. By applying the periodic boundary
conditions in the poloidal and axial directions, the perturbed
fields can be Fourier-transformed as
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with R0 being the major radius of the tokamak, m and n being
the poloidal and toroidal mode number, respectively.

The effect of RMP with m/n is taken into account by the
boundary condition

y y= =
~ q-r t1 e . 7m n

m nz R
, a

i i 0( ) ( ) ( )

In this way, the perturbed radial magnetic field at the plasma
boundary over the toroidal magnetic field could be calculated
by δBr/B0= amψa. It should be pointed out that, in a real
tokamak, the toroidal rotation is prevailing and much stronger
than the poloidal one, whereas only the poloidal rotation is
considered in this work. Considering the fact that the
electromagnetic force exerted in the poloidal direction is
(n/m)(rs/R) times smaller than that in the toroidal direction,
where rs is the radial location of the resonant surface, and
the speed in the toroidal direction should be (m/n)(R/rs)

times larger than the poloidal one for having an equivalent
rotation frequency, the locking threshold in the toroidal
direction can, therefore, be estimated by multiplying such a
factor m n R rs

2[( )( )] .
Given the initial profiles of f0, ψ0, p0 and v0, equations (1)–

(4) can be solved simultaneously by our code MDC. The two-
step predictor-corrector method is applied in the time advance-
ment. The finite difference method is used in the radial direction
and the pseudo-spectral method is employed for the poloidal and
the toroidal directions (θ, ζ=− z/R0).

3. Simulation results

3.1. Numerical set-up

Considering a low-density ohmically heated tokamak dis-
charge with electron density ne≈ 2× 1019 m−3, toroidal
magnetic field B0= 2 T and ε= 0.25, this will lead to the
Alfvén speed va≈ 6.9× 106 m s−1 and Alfvén time
τa≈ 7.24× 10−8 s. The corresponding Alfvén frequency is
ωa≈ 1.38× 107 Hz. Otherwise stated, other plasma para-
meters are set as follows, τ= 1, βe= 0.01, η= 10−6,
ν= 10−7, μ= 10−6, χ∥= 10 and χ⊥= 5× 10−6. In the
experimental condition, χ∥/χ⊥ can be 108–1010. However, in
our simulation, this value is a little lower than the realistic one
due to computational limitations. The radial mesh number is
set as Nr= 2048. The typical time step Δt in the simulations
is chosen as 0.001. However, Δt varies from different cases
due to numerical stability. In this work, the nonlinear simu-
lations only include single helicity perturbations with higher
harmonics (m/n= 3/2, 3 � m � 18), in addition to the
changes in the equilibrium quantities (m/n= 0/0 comp-
onent). To simulate the mode penetration process, a linearly
stable equilibrium safety factor q profile and the normalized
plasma pressure p profile = -p r r10

2 5( ) ( ) are given in
figure 1, with the q= 3/2 resonant surface located at
r = 0.402.

Figure 1. Safety factor q and pressure p profiles adopted in this work.
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3.2. Basic verification

To begin with, the role of seed island width on the onset of
NTM is verified to ensure the neoclassical current effect is
implemented properly. Under real experimental conditions,
the seed island comes from a variety of sources, and it may
come from different MHD modes, so the seed island width is
considered by the initial magnetic perturbation in an arbitrary
form of y y= -= r1t 0 00

2( ) . The nonlinear evolution of
magnetic island width for different initial magnetic pertur-
bations is presented in figure 2(a). The solid traces are for
bootstrap current fraction fb= 0.3 (NTM) and dotted one for
fb= 0.0 (TM). For the classical TM, even if a very large seed
island width is given, the island width still fades with time,
illustrating that the TM in this q profile is linearly stable.
Taking the bootstrap current into consideration, it is seen that
there is a threshold for the mode to grow, manifesting that the
nonlinearly unstable NTM is triggered for a larger seed island
width. In experiments, the RMP coils are commonly used to
seed a magnetic island. Then the onset of NTM by RMP is
tested (y == 0t 0

 ). The RMP is turned on from the very
beginning with the amplitude of δBr/B0= 3.75× 10−5. In

figure 2(b), in the presence of RMP, the nonlinear evolution
of island width for fb= 0.3 is shown. After applying the
RMP, the originally stable TM can be driven unstable, as the
island width grows even without seed island. Then the RMP
is turned off at different times when island width grows to a
moderate magnitude, to testify if it is the driven reconnection
or the onset of NTM. It turns out that, if the RMP is turned off
before the island width is sufficiently large, the magnetic
island still could not grow spontaneously. It confirms again
the existence of the critical island width for triggering the
NTM, which is consistent with the theory.

3.3. Effects of electric drift flow

Based on the above results, the effects of different RMP
amplitudes are then scanned for fb= 0.0 and fb= 0.3 with zero
rotation (electric drift ωE and diamagnetic drift ωdia are both
zero). For fb= 0.0 (figure 3(a)), the saturated island width is
positively related to the RMP amplitude, a typical driven
reconnection. However, for fb= 0.3 (figure 3(b)), a mode
penetration like phenomenon can be observed. If the RMP
amplitude is relatively small, the magnetic island is going to

Figure 2. (a) Nonlinear evolution of the island width for different magnitudes of seed island. The solid traces are for bootstrap current fraction
fb = 0.3 and the dashed trace is for fb = 0. (b) Nonlinear evolution of island width for different turn-off times of RMP with fb = 0.3 and
δBr/B0 = 3.75× 10−5.

Figure 3. Temporal evolutions of island width for different RMP amplitudes for bootstrap current fraction fb = 0 (a) and fb = 0.3 (b) without
plasma rotation.
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saturate at a very small magnitude. Once the RMP amplitude is
sufficiently large, the final island width would be very large and
keep almost the same even further increasing the RMP ampl-
itude. On the other hand, this phenomenon is different from the
so-called mode penetration, and we will demonstrate it next.

Corresponding to figure 3(b), the saturated magnetic
island width is shown as a function of RMP amplitude in
figure 4(a). As the RMP amplitude increases, the saturated
island width increases slowly first. Once the RMP amplitude
exceeds a threshold, there is a jump in the saturated island
width. This process can be divided into two parts, i.e. the
driven reconnection phase for smaller RMPs and the onset of
NTM for large RMPs. Next, including the effect of equili-
brium E×B flow, a scan over the RMP amplitude is per-
formed again. The equilibrium E× B flow is considered by a
poloidal momentum source Ωs(r)= 1/r*df0/dr. Here, δ is set
to be zero, so only the E×B flow is considered. For a
6.4 kHz plasma rotation, the saturated island width versus the
RMP amplitude is presented in figure 4(b). This is a typical
mode penetration case, as the RMP amplitude increases above
a threshold, the island width boosts to a large magnitude.
There is one main distinction between figures 4(a) and (b),
even though they look similar. That is, below the threshold,
the island width barely changes for the case with plasma
rotation but slowly increases for the case without rotation.
The increase regime for the case without rotation is due to the
forced reconnection driven by the externally applied RMP.
However, the regime below the threshold for the case with
rotation is due to the screening effect of the plasma flow. The
corresponding eigenmode structures of perturbed poloidal
magnetic flux and current density for the case without/with
plasma rotation are plotted in figure 5. It can be clearly
observed that the RMP is screened inside the resonant surface
for the case with rotation, from the fact that the magnetic
perturbation is nearly zero for r< rs. In addition, a strong
shielding current is formed at the resonant surface, which is
consistent with the results on TEXTOR tokamak [51]. These
characteristics are the same as the small locked island
phenomenon in [52, 53], suggesting that the small locked
island is the complete suppression of the magnetic island by

the RMP. Besides, a recent study also shows similar feasi-
bility of magnetic island suppression by RMP at moderate
amplitude [54]. For the case without rotation, on the other
hand, the m/n = 3/2 component of magnetic perturbation is
induced and kept by the 3/2 RMP at the boundary, indicating
that mode penetration has already taken place.

All in all, the above simulation results suggest that,
without plasma flow, the penetration threshold for the RMP is
zero. Considering the effect of bootstrap current, however, the
onset of NTM can lead to a mode penetration-like phenom-
enon, a driven connection regime plus an NTM regime. As a
result, it seems that there is a finite threshold for mode
penetration if not carefully distinguished.

3.4. Effects of diamagnetic drift flow

In this subsection, the effects of diamagnetic drift flow on the
RMP penetration are numerically studied in comparison with

Figure 4. Island width versus the RMP amplitude for natural frequency ω0 = 0 (a) and ω0 = 6.4 kHz (b). The bootstrap current fraction fb is
set as 0.3.

Figure 5. The typical eigenmode structure of poloidal magnetic flux
and current density for m/n= 3/2 component in the regime below
the jump of island width. For natural frequency ω0 = 0 (a) and (c),
the magnetic perturbation in the core region is excited by the RMP.
For ω0 = 6.4 kHz (b) and (d), the RMP is kept out from the resonant
surface. The solid traces are for the real part and the dashed traces
are for the imaginary part.
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the E× B electric drift flow. The equilibrium E×B flow
velocity can be directly obtained by vE0= ∂f0/∂r, and the
equilibrium electron diamagnetic flow velocity can be cal-
culated by vdia0=− δ∂p0/∂r, where the subscript 0 is for
equilibrium quantities. Therefore, the natural plasma rotation
could be obtained by the sum of these two effects. By
changing the value of δ, different amplitudes of diamagnetic
drift flow can be implemented.

As shown in figure 6, the screening effects of the
two types of flow on the RMP penetration are compared.
The solid lines are for cases with an equilibrium E×B flow
frequency ωE0= 6.4 kHz and diamagnetic flow frequency ωdia0

= 0, while dotted lines for ωdia0 = 6.4 kHz and ωE0= 0. Thus,
for both cases, the natural frequency is ω0= ωE0+ ωdia0

= 6.4 kHz. It makes no difference on the penetration threshold,
no matter what kind of flow it is, which means that the
penetration threshold only depends on the rotation difference
between the resonant surface and the RMP. Corresponding to
the two penetrated cases in figure 6, the temporal evolutions of
the flow frequencies ωE, ωdia, ωE+ωdia and the frequency of the
phase of the island ωph are illustrated in figure 7. It shows a
good agreement for the flow frequency and the phase fre-
quency after mode penetration, indicating that the magnetic
island and the flow are coupled in accordance with the frozen-
in theorem. For the case (ωE0= 6.4 kHz, ωdia0= 0), the ωE

decreases with time and drops to zero at the moment pene-
tration occurs. For the case (ωE0= 0, ωdia0= 6.4 kHz), since
the ωdia is a rigid flow effect that is mainly proportional to the
pressure gradient, it does not change at the beginning but starts
to decrease as the magnetic island grows, where the pressure
gradient is flattened. As a consequence, the ωE will rotate in the
opposite direction to cancel the diamagnetic flow.

When it comes to a larger rotation frequency, the situation
is somewhat different. Similar to figure 6, the nonlinear
evolution of the island width for a larger natural frequency
ω0 = 12.8 kHz is presented in figure 8. It shows again that the

Figure 7. Temporal evolutions of the phase frequencies ωph and
different flow frequencies ωE, ωdia, and ωtot = ωE+ ωdia. The ωph is
calculated by the partial derivative of the phase of poloidal flux Φψ

with respect to time. ωE and ωdia are the angular frequencies of
electric drift and diamagnetic drift flow, respectively.

Figure 8. Nonlinear evolution of the island width for
ω0 = ωE0 = 12.8 kHz (solid) and ω0 = ωdia0 = 12.8 kHz (dashed).

Figure 6. Nonlinear evolution of the island width for
ω0 = ωE0 = 6.4 kHz (solid) and ω0 = ωdia0 = 6.4 kHz (dashed).
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penetration threshold is almost the same. However, there are
two differences observed. First, the saturated island width is
evidently smaller for the case (ωE0= 0, ωdia0= 12.8 kHz) than
that of the case (ωE0= 12.8 kHz, ωdia0= 0), implying that the
diamagnetic flow can drive a stabilizing effect on the magnetic
island. Second, an oscillation phenomenon of the magnetic
island is discovered after mode penetration. To further analyze
this oscillation phenomenon, the island width and flow fre-
quency of the oscillated case in figure 8 are plotted, as shown
in figure 9. The periodical oscillation of diamagnetic flow
frequency is observed as well in figure 9(b). It should be noted
that the oscillation of frequency lags behind the island width a
bit, suggesting that the change of island width results in the
change of the diamagnetic flow frequency at first. Since the
diamagnetic flow is proportional to the pressure gradient, it can
be straightforwardly inferred that this phenomenon is related to
the change in plasma pressure. To proceed to a further step, the
contour plot of the pressure p together with the poloidal
magnetic flux ψ is shown in figure 10, corresponding to the
four red time points in figure 9. As the magnetic island grows
larger (t = 73000 and t = 83200), the pressure gradient ∇∥p

with respect to the magnetic field inside the island becomes
larger. For a smaller island width (t= 77000 and t= 88800), in
contrast, ∇∥p is smaller. This modification of the pressure
gradient can in return affect the island width by the δ∇∥p term
in equation (2), leading to the above oscillation phenomenon.
To make it more clear, the nonlinear evolutions of the island
width and the value of ∇∥p at the resonant surface are plotted
in figure 11. It is obviously shown that the island width and
pressure gradient exhibit a negative feedback relationship, as
discussed above.

In order to further verify our conjecture, the effect of
resistivity η is then investigated. For a larger η, it turns out that
the oscillation phenomenon disappears and the island width
recovers as illustrated in figure 12(a). It can be easily under-
stood through equation (2). Since η is a diffusive term, the
effect of δ∇∥p term, stabilizing the island and causing the
oscillation, can be diffused to some extent with the increasing
η, in much the same way as viscosity ν in the vorticity equation
stabilizing the oscillation of rotation. In other words, the
oscillation phenomenon is a result of the competition of the
two terms δ∇∥p and η( j− jb). For the same reason, a smaller
bootstrap current fraction fb can remove the oscillation by
making the η( j− jb) term larger, shown in figure 12(b). As the
ratio of parallel to perpendicular transport coefficients, χ∥/χ⊥

is crucial to the process of pressure evolution, the effects of
different χ∥ and χ⊥ values are studied. In figures 12(c) and (d),
the temporal evolution of the island width is plotted for dif-
ferent χ∥ and χ⊥. The results are intuitive, i.e. a smaller χ∥ or
larger χ⊥ can eliminate the oscillation. This is because a
smaller χ∥/χ⊥ can lower the energy transport level along the
magnetic field lines, which would reduce the variation of the
δ∇∥p term when the size of the magnetic island changes.

4. Summary and discussion

The initial value code MDC (MHD@Dalian Code) is
upgraded with the capability of two-fluid effects. On the basis
of the well-known four-field equations [47], the bootstrap
current, parallel and perpendicular transport effects are addi-
tionally included. In this work, the numerical simulation of
the mode penetration is conducted based on the two-fluid
model. The main points can be summarized as follows.

(i) The threshold of mode penetration at zero rotation is
explored. It is found that for the classical TM ( fb= 0), there
is no threshold for mode penetration. In this circumstance,
the behavior of the magnetic island is dominated by driven
reconnection, i.e. the saturated island width is positively
related to the amplitude of RMP. For the NTM ( fb≠ 0), on
the other hand, a mode penetration-like phenomenon is
observed consisting of a driven reconnection regime and an
NTM regime. This phenomenon is different from the so-
called mode penetration but can be mistakenly defined as
mode penetration if not carefully distinguished. It may
provide a possible explanation for the finite mode penetration
threshold at zero rotation detected in experiments. The

Figure 9. Temporal evolution of the island width and various
frequencies for the oscillated case (ω0 = ωdia0= 12.8 kHz, δBr/B0 =
9.75× 10−5) in figure 8. Oscillation of ωdia is observed after mode
penetration. Four time points t = 73000, t = 77000, t = 83200, and
t = 88800 are marked by the red circles.
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polarization drift, which is an important physics for
NTM besides the pressure transport model, is not
included in this work. Its role will be investigated in a
future study.

(ii) The effect of diamagnetic drift flow on mode penetration is
numerically studied. For a smaller diamagnetic drift flow,
numerical results show that its influence is almost the same
as the electric drift flow with comparable frequency.

However, for a larger diamagnetic drift flow, it can drive a
stabilizing effect on the magnetic island through the δ∇∥p
term in equation (2). Besides, an oscillation phenomenon of
the island width is observed. This oscillation is linked with
the change of pressure during the variation of island width. It
tends to appear in the high Lundquist number S and high
χ∥/χ⊥ regime, where the parameter of the advanced
tokamak exactly lies.

Figure 10. Contour plot of the plasma pressure p (solid lines) and poloidal flux ψ (dotted lines), corresponding to the four red time points
marked in figure 9.

Figure 11. Nonlinear evolution of the island width (solid) and the value of ∇∥p (dotted) at the resonant surface after mode penetration.
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