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Abstract
Transport of fast ions is a crucial issue during the operation of ITER. Redistribution of neutral
beam injection (NBI) fast ions by the ideal internal magnetohydrodynamic (MHD) instabilities
in ITER is studied utilizing the guiding-center code ORBIT (White R B and Chance M S 1984
Phys. Fluids 27 2455). Effects of the perturbation amplitude A of the internal kink, the
perturbation frequency f of the fishbone instability, and the toroidal mode number n of the
internal kink are investigated, respectively, in this work. The =n 1 internal kink mode can cause
NBI fast ions transporting in real space from regions of < s0 0.32 to < s0.32 0.53,
where s labels the normalized plasma radial coordinate. The transport of fast ions is greater as the
perturbation amplitude increases. The maximum relative change of the number of fast ions
approaches 5% when the perturbation amplitude rises to 500 G. A strong transport is generated
between the regions of < s0 0.05 and < s0.05 0.12 in the presence of the fishbone
instability. Higher frequency results in greater transport, and the number of fast ions in
< s0 0.05 is reduced by 30% at the fishbone frequency of 100 kHz. Perturbations with higher

n will lead to the excursion of fast ion transport regions outward along the radial direction. The
loss of fast ions, however, is not affected by the internal MHD perturbation. Strong transport
from < s0 0.05 to < s0.05 0.12 does not influence the plasma heating power of ITER,
since the NBI fast ions are still located in the plasma core. On the other hand, the influence of
fast ion transport from < s0 0.32 to < s0.32 0.53 needs further study.
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1. Introduction

Generated either from fusion reactions, or from auxiliary heating
like neutral beam injection (NBI), ion cyclotron radio frequency
wave, and low hybrid wave, the fast ions are usually highly
populated in the center of the plasma and play an important role

in the plasma heating [1, 2]. The magneto-hydrodynamic
(MHD) instabilities in tokamaks, however, will interact with fast
ions and result in the transport and loss of fast ions from the core
region to the edge of the plasma. This degraded confinement of
fast ions has a significant impact on the fusion power and plasma
properties. It will not only reduce the fusion power and energy
gain of tokamaks, but also cause the degradation of plasma
confinement performance and damage to the first wall.
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Therefore, the transport of fast ions is a critical issue for present
tokamaks and future fusion devices such as ITER [3, 4].

Due to the importance of this topic, the transport of fast
ions has been studied for many years [5]. With the develop-
ment of tokamak devices and theoretical models, both
experiment and simulation works have been extensively
carried out to study the conditions and mechanism of fast ion
transport. In several tokamak devices, the transport and loss
of fast ions induced by various MHD instabilities have been
investigated [6–10]. Besides the experimental investigations,
the modeling works are devoted to analyzing the experimental
data and relevant physical processes, which contribute to
continuous progress in the understanding of fast ion transport
in recent years. Based on the experimental results of DIII-D,
several simulation works are carried out utilizing the codes
ORBIT, M3D-C1, OFSEF and TRANSP to study the NBI
fast ion transport [11–13]. The fast ion redistribution triggered
by sawtooth instability is also investigated with the codes
M3D-K and ORBIT [14, 15]. The effects of other MHD
instabilities, like toroidal field (TF) ripples, neoclassical
tearing mode [16] and ion temperature gradient driven mode
[17], on fast ion transport are studied with original theoretical
models. Moreover, the numerical simulation is a crucial
solution for fast ion transport study during the design of
future tokamak devices in the absence of experimental con-
ditions. For instance, the codes ASCOT, SPIRAL and ORBIT
are utilized to study the TF ripple-induced fusion alpha
transport in SPARC [18] and CFETR [19].

Among the existing and future tokamak devices, ITER is
the most promising device to demonstrate controlled fusion
energy. In the design of ITER, the fast ions generated from
NBI are the main external heating method to maintain plasma
heating power and achieve high energy gain [2]. Different
from the energy of about 100 keV in other tokamak devices,
the energy of NBI fast ions in ITER is about 1 MeV due to the
heating requirement [20]. With this high energy, NBI fast ions
are able to penetrate into the central region and heat the bulk
plasma there. On the other hand, the plasma current in ITER
is designed to be 15 MA in the D-T fusion scenario [21]. This
high current may lead to a burst of the internal kink mode in
the plasma core. Meanwhile, the fishbone instability can be
excited by the interaction of fast ions with the internal kink
mode [22]. The relevant simulation works have been exten-
sively carried out, for instance, the investigations of NBI
transport and loss in ITER by radial electric field [23] and
RMPs [24, 25]. Redistribution of alpha particles by internal
kink and sawtooth is studied with circular cross section and
ITER-like parameters [26–28]. Fast ion transport by fishbone
is simulated for a JET plasma based on the experimental
measurements [22]. Besides the fast ion transport, the effects
of fast ions on internal kink/fishbone have been extensively
studied since the last century [29–42], which are therefore not
discussed in this work.

As the NBI fast ion redistribution can be triggered by
internal kink mode [28] and fishbone instability [43], the
effect of internal MHD instabilities on transport and loss of
NBI fast ions is also a key issue in ITER. Numerical stu-
dieson redistribution of high energy NBI fast ions by internal

kink/fishbone in ITER, however, arescarce, which motivates
the present study. In this work, the tracing particle orbit code
ORBIT [44] is utilized to calculate the redistribution of NBI
fast ions with ideal internal MHD instabilities in ITER. The
initial fast ion distribution function is calculated by a time-
dependent 2D Fokker–Planck solver in velocity space [45]
with the first orbit averaged ion sources. The initial dis-
tribution of half a million fast ions is in accordance with the
operation condition of ITER. Based on the operation para-
meters and high energy NBI condition in ITER, the effects of
the internal kink mode and the fishbone with higher fre-
quency, which is supposed to be a special phenomenon in
ITER, are studied numerically. Three parameters are investi-
gated, respectively: the perturbation amplitude A of the
internal kink, the perturbation frequency f of the fishbone,
and the toroidal mode number n of the internal kink. In this
simulation, the perturbation amplitude is assumed to be

=A 100, 300, 500 G, the perturbation frequency is assumed
to be =f 0, 20, 40, 60, 80, 100 kHz, and the toroidal mode
numbers are =n 1, 2, 3, 4. Closely related to internal kink
mode, the mode structure of the fishbone is the same as that of
the = =m n 1 internal kink [46], where m is the poloidal
mode number. In the practical simulation, the internal kink
mode structure is usually used to replace fishbone instability
[6, 22, 43]. Hence the effect of the fishbone is simulated by
adding different perturbation frequencies to the structure of
the =n 1 internal kink. The simulation results show that the
NBI fast ion redistribution is sensitive to the perturbation
amplitude and frequency. The loss of NBI fast ions, however,
is not affected by the perturbation amplitude, the perturbation
frequency, or the toroidal mode number. The structure of this
paper is as follows. Section 2 briefly introduces the code
ORBIT. Section 3 presents the initial distribution data of NBI
fast ions and the structures of internal kink perturbation
applied with different n. In section 4, the simulation of NBI
fast ion redistribution by ideal internal MHD instabilities is
performed. Section 5 summarizes the results.

2. Modeling approach of ORBIT code

The effects of internal kink mode on the redistribution of NBI
fast ions in ITER are simulated using the tracing particle orbit
code ORBIT [44]. The code traces and calculates the position
and velocity of particles in plasma by solving guiding center
orbit equations. From the Hamiltonian quantities, Lagrangian
quantities, Lagrangian equations and magnetic field expres-
sions for guiding center drift motion without perturbation, the
equations of particle motion without perturbation can be
derived. If the magnetic field perturbation is considered, the
canonical momentum, Hamiltonian, poloidal and toroidal
canonical momentum will be modified and new motion
equations can be obtained [44, 47]. The specific expressions
and equations are presented in the appendix. By solving the
particle guiding center motion equations with the fourth-order
Runge–Kutta method, ORBIT can trace the position and
velocity of particles and then obtain their orbits and
distribution.
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3. Initial distribution of NBI fast ions and IK
perturbation structures

3.1. Initial distribution of NBI fast ions loaded by ORBIT

The particle orbit tracing code ORBIT is utilized to simulate the
effects of internal kink mode on the redistribution of NBI fast
ions in ITER. In the calculation of ORBIT, this work uses the
initial distribution data of half a million of NBI fast ions, which
is calculated by time-dependent 2D Fokker–Planck solver in
velocity space [45] with first orbit averaged ion sources, as the
input data of particle distribution at the initial moment.

Figure 1 shows the distribution of half a million NBI fast
ions in ITER at the initial moment. Figures 1(a) and (b) show,
respectively, the initial distribution in real space and in phase
space. The color bar indicates the number of particles.
Figure 1(a) shows that most NBI fast ions are populated in the
core region in ITER at the initial moment. Figure 1(b) shows
that most NBI fast ions have a pitch angle larger than 0.5, and
the number of NBI fast ions with an energy around 1MeV is
the largest. The information provided by the real and phase
spaces indicates that the initial distribution is a distribution of
NBI fast ions which have just been injected into ITER and
have not been slowed down for a long time. Thus, the energy
and pitch angle of most fast ions are centered around 1MeV
and 0.8, respectively.

3.2. IK perturbation structures assumed for ORBIT

To study the effects of internal kink mode/fishbone instability
on redistribution of NBI fast ions in ITER, three instability
parameters are investigated: the perturbation amplitude A, the
perturbation frequency f and the toroidal mode number n. In
the investigation of n, the structure of perturbation assumed
for ORBIT will be changed due to the change of n in internal
kink mode.

Figures 2(a)–(c) show the profiles of bulk plasma temp-
erature, bulk plasma density and safety factor q in the ITER
15 MA scenario assumed for ORBIT. The horizontal coor-
dinate y yº /s p w represents the normalized plasma radial

position, where yp is the poloidal flux and yw denotes the
poloidal flux at the wall location. Thus =s 0 at the magnetic
axis and =s 1 at the edge of the plasma. In plot (a), the
vertical coordinate denotes the temperature of the bulk plasma
in units of keV. The blue dotted and red solid curves repre-
sent, respectively, the temperature profiles of bulk electrons
and bulk ions. The vertical coordinate in plot (b) indicates the
density of bulk plasma in units of m−3. The blue-dotted,
green-dotted and red solid curves in plot (b) represent,
respectively, the density profiles of bulk electrons, bulk
deuterium ions and bulk tritium ions. In plot (c), the vertical
coordinate is the safety factor q. The black vertical dotted line
represents the radial position of =s 0.53 where the safety
factor =q 1. In general, the safety factor q increases as s
increases, while a slight negative shear presents itself in the
region of < <s0.2 0.4. At the position of =s 0, =q 0.95.
It can be seen that <q 1 in the region of <s 0.53 and >q 1
in the region of >s 0.53.

Figure 3 presents the structure of the internal kink mode
assumed for ORBIT with =n 1, 2, 3, 4. Figures 3(a)–(d)
show the structure of perturbation displacement output by
MARS-F [48]. The horizontal coordinate y yº /s p w is the
normalized plasma radial position. The vertical coordinate

( )x norm.amp represents the amplitude of perturbation dis-
placement normalized by the major poloidal mode number m
component. The perturbation components with different m are
represented by different color curves. The negative value
represents the radial direction of perturbation displacement. It
can be seen that as n increases, the m component that plays a
major role in perturbation displacement structure also
increases, and there is always major =m n. After importing
the internal kink mode structure of figures 3(a)–(d) into
ORBIT, the structure of radial magnetic perturbation field
amplitude calculated by ORBIT is shown in figures 3(e)–(h).
The vertical coordinate /B Bd r indicates the radial magnetic
perturbation field amplitude normalized by the background
magnetic field in ITER, which is 5.3 T. The actual perturba-
tion amplitude used is determined by the amplitude peak of
the maximum magnetic field component in figures 3(e)–(h),
which can be modified in ORBIT. These two figures show
that the structures of internal kink modes with different n are
all located in the region of <s 0.53, which indicates the
region of <q 1. Moreover, the peaks of internal kink per-
turbations shift outward along the radial direction as n
increases.

Figure 1. Distribution of half a million of NBI fast ions in ITER at
the initial moment the color bar indicates the number of particles. (a)
Distribution in real space, where the R–Z plane represents the
poloidal cross section of the plasma in ITER. (b) Distribution in
phase space, where E is the energy of fast ions, /v v is the pitch
angle of fast ions.

Figure 2. Profiles of (a) bulk plasma temperature, (b) bulk plasma
density, (c) safety factor q in ITER 15 MA scenario assumed for
ORBIT.
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4. NBI fast ion redistribution by IK/fishbone

4.1. Effects of perturbation amplitude on NBI fast ion
redistribution

This section focuses on the effects of perturbation amplitude
A on the redistribution of NBI fast ions. As the perturbation
structure shown in figures 3(a) and (e), the perturbation
amplitude considered here is the peak value of the radial
perturbation field amplitude. The maximum perturbation
amplitude is supposed as 1% of the background magnetic
field, which is 5.3 T in ITER. Three different perturbation
amplitudes of internal kink mode are investigated:

=A 100, 300, 500 G. The toroidal mode number and the
perturbation frequency are fixed as =n 1 and =f 0. ORBIT
is utilized to calculate the redistribution of NBI fast ions after
5 ms in ITER with four cases of no perturbation and three
different perturbation amplitudes.

The calculation results of ORBIT are shown in figure 4.
Figures 4(a)–(c) compare, respectively, the number profiles of
NBI fast ions in real space for =A 100, 300, 500 G per-
turbations with no perturbation. The vertical coordinate N
indicates the number of NBI fast ions at the corresponding
radial position. The blue curves represent the case without
perturbation and the red curves represent the =A
100, 300, 500 G perturbation cases. The two black vertical
dotted lines in plot (c) represent the radial positions of
=s 0.32 and =s 0.53. As figure 4 shows, the NBI fast ion

profiles are basically unchanged with 100 G perturbation
amplitude. When the perturbation amplitude increases, the
NBI fast ion profile starts to change. Considering the cases of
500 G perturbation, in the region of < s0 0.32, the effect
of internal kink mode decreases the number of NBI fast ions;

in the region of < s0.32 0.53, the number of NBI fast ions
increases; in the region of >s 0.53, the number of fast ions is
almost unchanged. This indicates that some NBI fast ions
move from the region of < s0 0.32 to the region of

< s0.32 0.53 under the effect of perturbation. The internal
kink mode causes some NBI fast ions in the core region to
transport outward.

Figures 4(d)–(f) show more clearly the relationship
between the degree of NBI fast ion transport and the pertur-
bation amplitude. The vertical coordinate indicates the rela-
tive change of NBI fast ion number at the corresponding
radial position in the presence of perturbation, which is cal-
culated as:

( ) ( )
( )

( )=
-N s N s

N s
Relative change , 1

pert 0

0

where ( )N spert and ( )N s0 label, respectively, the NBI fast ion
number at the corresponding radial position s for cases with
and without perturbation. It is shown that the transport of NBI
fast ions from the core region to the outer part becomes more
and more obvious as the perturbation amplitude increases.
When the perturbation amplitude is 500 G, the maximum
relative change of NBI fast ion number is close to 5%.

Figure 5 illustrates the relationship curve between the
NBI fast ion loss rate and the perturbation amplitude. The loss
rate is obtained by dividing the number of fast ions lost by the
total number of fast ions, which is half a million. In this work,
the free boundary condition is adopted for the internal kink
computation. As for the fast ion tracing simulation by ORBIT,
the last closed flux surface (LCFS) is assumed as the
boundary, i.e. the fast ions that intersect the LCFS are con-
sidered lost. It can be seen that the perturbation amplitude

Figure 3. Structures of internal kink mode assumed for ORBIT. The first row (a)–(d) shows the structures of internal kink perturbation
displacement with the toroidal mode number (a) =n 1, (b) =n 2, (c) =n 3, (d) =n 4. The second row (e)–(h) shows the structures of
internal kink perturbation field amplitude with the toroidal mode number (e) =n 1, (f) =n 2, (g) =n 3, (h) =n 4.
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basically does not affect the number of fast ions lost. This is
because the internal kink mode perturbation occurs in the core
region in ITER, and the NBI fast ions are mainly transported
from < s0 0.32 to < s0.32 0.53 in the presence of
perturbation. Therefore, increasing the perturbation amplitude
has essentially no effect on the loss of NBI fast ions.

The redistribution of NBI fast ions in the particle phase
space with 500 G perturbation is shown in figure 6.
Figure 6(a) corresponds to the real space region of
< s0 0.32 and figure 6(b) corresponds to the region of

< s0.32 0.53. The horizontal coordinate in the figures is
the fast ion energy in keV, the vertical coordinate is the pitch

angle of fast ions. The color bar represents the number of
increases or decreases of NBI fast ions in the presence of
500 G perturbation compared with the no perturbation case.
The dN represents the total increase or total decrease of NBI
fast ions in the corresponding real space region.

Figure 6(a) shows that in the region of < s0 0.32,
NBI fast ions with energy close to 1MeV and a pitch angle of
about 0.8 decreases the most, followed by NBI fast ions with
energy of about 600 to 800 keV. Figure 6(b) shows that in the
region of < s0.32 0.53 the number of NBI fast ions with
an energy around 1MeV and pitch angle around 0.8 decreases
the most, followed by a slight increase in NBI fast ions with
energy between 600 and 800 keV. Combining the phase space
information in figure 6, it can be learned that most NBI fast

Figure 4. NBI fast ion number profiles in real space. The first row (a)–(c) presents the variation of NBI fast ion number profiles in real space
in the presence of the perturbation amplitude =A (a) 100 G, (b) 300 G, (c) 500 G internal kink perturbations (the perturbation frequency
=f 0, the toroidal mode number =n 1). The second row (d)–(f) presents the relative change of NBI fast ion number in real space in the

presence of the perturbation amplitude =A (d) 100 G, (e) 300 G, (f) 500 G internal kink perturbations.

Figure 5. Relationship of NBI fast ion loss rate and perturbation
amplitude A. The fast ions are considered as lost once they intersect
the last closed flux surface (LCFS).

Figure 6. Distribution of NBI fast ion number change in the particle
phase space ( - /E v v plane) in the presence of the perturbation
amplitude =A 500 G, the perturbation frequency =f 0, the toroidal
mode number =n 1 internal kink perturbation. (a) Distribution in
the real region of the radial position < s0 0.32. (b) Distribution
in the real region of the radial position < s0.32 0.53.
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ions transported from < s0 0.32 to < s0.32 0.53 in
the presence of 500 G perturbation have an energy around
1MeV and a pitch angle of around 0.8. This is exactly the
class of NBI fast ions with the largest number in the initial
distribution data. At the same time, the fast ion energy and
pitch angle do not change after transport, indicating that the
type of fast ion orbit remains the same. But the orbit radius of
the fast ion increases, making the fast ion transport outward.

In the region with the largest change of NBI fast ion
number in figure 6, the fast ion with an energy of 960 keV and
pitch angle of 0.8 is selected. The real-space Poincaré dia-
grams of NBI fast ion are presented in figure 7. Figures 7(a)
and (b) show, respectively, the cases without perturbation and
with 500 G perturbation. The vertical coordinate q in
figure 7(a) represents the poloidal angle of the fast ion. Each
vertical line represents the fast ion orbit on different magnetic
surfaces. There is no transport phenomenon without pertur-
bation. The poloidal angle of the fast ion is constantly
changing while the radial position remains unchanged during

its motion, so the fast ion orbit is represented as vertical lines
in the Poincaré diagram. In figure 7(b), the fast ion orbits are
distorted in the presence of 500 G internal kink mode per-
turbation, while the magnetic island structure capable of
enhancing transport appears. The distortion of orbits repre-
sents a change in the radial position of the fast ion during its
movement. The appearance of two magnetic islands repre-
sents the predominant role of the =m 2 component in all the
magnetic perturbation field components, which is consistent
with the structure of magnetic perturbation assumed for
ORBIT in figure 3(e).

4.2. Effects of perturbation frequency on NBI fast ion
redistribution

In this section, the effect of different mode perturbation fre-
quencies f on the redistribution of NBI fast ions will be
investigated. In the previous experiments on existing tokamak
devices, the fishbone frequencies measured are in the range of
10–20 kHz [43, 49–52]. With a high-power NBI (injection
power of 0.95MW and fast ion energy of 40 keV), the fishbone
frequencies measured on HL-2A can reach up to 30 kHz [53]. In
the burning plasmas, the maximum fishbone frequency evaluated
for TFTR is about 100 kHz [54]. As the NBI power (33MW)
and fast ion energy (1MeV) in ITER [20] are much higher than
those of existing tokamaks, the fishbone frequency in ITER is
supposed to be higher than 20 kHz. Hence the perturbation fre-
quencies =f 0, 20, 40, 60, 80, 100 kHz are selected to cal-
culate the distribution of NBI fast ions after 5ms of evolution,
with the toroidal mode number =n 1 and the perturbation
amplitude =A 500 G fixed. Since changing the frequency does
not affect the mode perturbation structure, ORBIT in this section
uses the same perturbation structure of figures 3(a) and (e).

The calculation results of ORBIT are shown in figures 8
and 9. Figure 8 compares the number profiles of NBI fast ions

Figure 7. Real-space Poincaré diagram of NBI fast ion drift orbits
with =E 960 keV and =/v v 0.8. (a) Case without perturbation.
(b) Case with the perturbation amplitude =A 500 G, the
perturbation frequency =f 0, the toroidal mode number =n 1
internal kink perturbation.

Figure 8. Variation of NBI fast ion number profiles in real space in the presence of perturbations with the perturbation frequency =f (a)
0 kHz (the perturbation amplitude =A 500 G, the toroidal mode number n=1 internal kink perturbation), (b) 20 kHz, (c) 40 kHz, (d)
60 kHz, (e) 80 kHz, (f) 100 kHz ( =A 500 G, =n 1 fishbone perturbation).
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in real space with six different perturbation frequencies and
without perturbation. The two black vertical dotted lines in
plot (f) represent the radial positions of =s 0.05 and
=s 0.12. The NBI fast ions under 0 kHz perturbation are

mainly transported from < s0 0.32 to < s0.32 0.53.
As the perturbation frequency increases, the transport in the
outer region is essentially unchanged, but the transport in the
inner region is more variable. The number of NBI fast ions in
the region of < s0 0.05 decreases substantially under the
effect of perturbation with frequencies, while in the regions of

< s0.05 0.12 and < s0.15 0.25 the number of fast
ions increases. This means that the NBI fast ions will
transport from < s0 0.05 to < s0.05 0.12 and

< s0.15 0.25 under the effect of perturbation with
frequencies compared to the case without frequency.

Figure 9 shows the relative change of NBI fast ion
number in real space with different perturbation frequencies.
The transport phenomenon of NBI fast ions from
< s0 0.05 to < s0.05 0.12 can be clearly seen, and the

extent of fast ion transport in this region increases as the
perturbation frequency increases. The relative decrease of
NBI fast ion number in the region of < s0 0.05 can reach
30% with the influence of 100 kHz perturbation.

Although the transport of NBI fast ions in the inner
region in the presence of high-frequency perturbations is
severe, the radial position of this massive transport of fast ions
is small and still located in the plasma core region. Therefore,
in the absence of transport out of the plasma core, this large
transport of NBI fast ions does not affect the NBI heating
power and fusion condition in ITER.

Figure 10 presents the relationship curve between the
NBI fast ion loss rate and the perturbation frequency. It can be
seen in the figure that the variation of NBI fast ion loss rate

with the change of perturbation frequency is extremely small.
In the background of half a million NBI fast ions, the max-
imum variation of the number of fast ions lost between dif-
ferent perturbation frequencies does not exceed 50. Thus the
loss of NBI fast ions is considered to be unaffected by the
perturbation frequency.

As different fishbone frequencies are investigated here,
the resonance between the mode and the fast ions indeed
affects the fast ion transport. This resonant interaction
depends on the mode frequency and the assumed initial dis-
tribution of fast ions. In this work, such resonance is partially
taken into account. In this subsection, the 3D perturbation
structure (internal kink mode with =n 1) and amplitude
( =A 500 G) are fixed, while scanning the mode frequency

Figure 9. Relative change of NBI fast ion number in real space in the presence of perturbations with the perturbation frequency =f (a) 0 kHz
(the perturbation amplitude =A 500 G, the toroidal mode number =n 1 internal kink perturbation), (b) 20 kHz, (c) 40 kHz, (d) 60 kHz, (e)
80 kHz, (f) 100 kHz ( =A 500 G, =n 1 fishbone perturbation).

Figure 10. Relationship of NBI fast ion loss rate and perturbation
frequency f. The fast ions are considered as lost once they intersect
the LCFS.
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(from 0 to 100 kHz) and tracing the fast ion orbits. The
resonance between a rotating perturbation and the fast ions is
thus taken into account in the above sense, which has been
shown to slightly increase the fast ion loss rate as reported in
figure 10. On the other hand, the drift kinetic effect of fast
ions on the internal kink instability (which again depends on
the mode-particle resonance) is not considered in this work.
Physics studiesof this effect have been extensively carried
out in the literature. The above two-way resonant interactions
can be studied within the linear stability analysis.

However, the nonlinear evolution of fishbone and the
associated fast ion redistribution is not studied in the present
work. Such nonlinear interactions, which often lead to the
mode frequency chirping, have again been studied in litera-
ture e.g. in [55, 56] for ITER. Such a study is beyond the
capability of the computational tools (MARS and ORBIT)
employed in this work.

Figures 11(a) and (b) present, respectively, the redis-
tribution of NBI fast ions in the particle phase space
in the regions of < s0 0.05 and < s0.05 0.12. In
Figure 11(a), the number of NBI fast ions with the energy
around 1MeV and pitch angle around 0.8 decreases the most
in the region of < s0 0.05 in the presence of 100 kHz
perturbation. Figure 11(b) shows that most of the increased
NBI fast ions in the region of < s0.05 0.12 have an
energy of about 800 keV and a pitch angle of about 0.8.

Combining the information in figure 11, it can be seen
that in the presence of 100 kHz perturbation, most of the NBI
fast ions transported from < s0 0.05 to < s0.05 0.12
have a decrease in energy from about 1 MeV to about
800 keV, while the pitch angle is not changed. This indicates
that the energy of fast ions will be changed by the perturba-
tion with frequency during the transport in this region, but the
pitch angle is not affected. Therefore, the orbit type of NBI
fast ions remains unchanged and the orbit radius increases,
allowing the fast ions to be transported outward for some
distance.

To verify the conclusions from the real-space and phase-
space redistribution, an NBI fast ion with an energy of
960 keV and pitch angle of 0.8 is taken in the region of

< s0 0.05. The orbit of a fast ion moving 5 ms in the
presence of 0 and 100 kHz perturbations is calculated utilizing
ORBIT. The calculation results are shown in figure 12.
Figures 12(a) and (b) show, respectively, the NBI fast ion
orbits on theR–Z plane in the presence of 0 and 100 kHz
perturbations. Compared with 0 kHz perturbation, the orbit
radius of the fast ion with 100 kHz perturbation is sig-
nificantly larger and the orbit spans a larger region. This
confirms that the NBI fast ions with the effect of 100 kHz
perturbation do transport from < s0 0.05 to

< s0.05 0.12 compared to the case of 0 kHz perturbation,
resulting in a significant transport phenomenon in the plasma
core region.

4.3. Effects of internal kinks with different toroidal mode
numbers on NBI fast ion redistribution

In this section, the effect of internal kink modes with different
toroidal mode numbers n on the redistribution of NBI fast
ions is investigated. The perturbation amplitude =A 500 G
and the perturbation frequency =f 0 are fixed, while the
toroidal mode numbers are =n 1, 2, 3, 4.

Figure 13 presents the calculation results of ORBIT for
different n. Figures 13(a)–(d) compare, respectively, the
variation of the number profiles of NBI fast ions in
real space with the =n 1, 2, 3, 4 internal kink mode
perturbations and without perturbation. The four black
vertical dotted lines in plots (a)–(d) represent the radial
positions of =s 0.32, 0.34, 0.36, 0.38. The calculation
results show that although the change of n does not affect
the overall shape of NBI fast ion redistribution, the
boundary of fast ions is related to n. When =n 1, 2, 3, 4,
the NBI fast ions are transported, respectively, from the
regions of s 0.32, 0.34, 0.36, 0.38 to the regions
of >s 0.32, 0.34, 0.36, 0.38.

The boundary of fast ion transport increases as n
increases. Figures 13(e)–(h) show the relative change of NBI
fast ion number in real space with different n. The relative
change of NBI fast ion number is basically constant when n
increases, while the region where fast ion transport occurs is
gradually shifted outward in the radial direction. This shift of

Figure 11.Distribution of NBI fast ion number change in the particle
phase space ( - /E v v plane) in the presence of the perturbation
amplitude =A 500 G, the perturbation frequency =f 100 kHz, the
toroidal mode number =n 1 fishbone perturbation. (a) Distribution
in the real region of the radial position < s0 0.05. (b)
Distribution in the real region of the radial position < s0.05 0.12.

Figure 12. Orbits of single NBI fast ion on the R–Z plane in the
presence of perturbations with the perturbation frequency (a) =f
0 kHz (the perturbation amplitude =A 500 G, the toroidal mode
number =n 1 internal kink perturbation), (b) f= 100 kHz
( =A 500 G, =n 1 fishbone perturbation).
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transport region is related to the outward excursion of internal
kink perturbations with different n along the radial direction,
which is presented in figure 3.

The relationship curve between the loss rate of NBI fast
ions and toroidal mode number n is shown in figure 14. It can
be seen that the loss rate of fast ions is not affected by n.
Similar conclusions are shown in sections 4.1 and 4.2 that the
perturbation amplitude and frequency have no effect on the
fast ion loss rate. As the internal kink/fishbone perturbation
occurs mainly in the core region in ITER, which is a large-
scale tokamak device, the transport of NBI fast ions with

perturbation is not sufficient to cause the fast ions to move to
the plasma edge and escape from the plasma. Hence the
internal MHD perturbation does not affect the loss of NBI fast
ions in ITER.

Figure 15 presents the redistribution of NBI fast ions in
the particle phase space in the regions of < s0.15 0.36
and < s0.36 0.60. Figure 15(a) shows that in the presence
of the =n 3 internal kink mode perturbation, NBI fast ions in
the region of < s0.15 0.36 with the largest number
reduction have the pitch angle around 0.8, while the energy is
distributed between 700 keV and 1MeV, and between
200 and 500 keV. Figure 15(b) shows that the number of NBI
fast ions with pitch angle around 0.8 and energy around

Figure 13.NBI fast ion number profiles in real space. The first row (a)–(d) shows the variation of NBI fast ion number profiles in real space in
the presence of the perturbation amplitude =A 500 G, the perturbation frequency =f 0 internal kink perturbations with the toroidal mode
number (a) =n 1, (b) =n 2, (c) =n 3, (d) =n 4. The second row (e)–(h) shows the relative change of NBI fast ion number in real space in
the presence of the internal kink perturbations with the toroidal mode number (e) =n 1, (f) =n 2, (g) =n 3, (h) =n 4.

Figure 14. Relationship of NBI fast ion loss rate and the perturbation
amplitude =A 500 G, the perturbation frequency =f 0 internal
kinks with different toroidal mode numbers n. The fast ions are
considered lost once they intersect the LCFS.

Figure 15.Distribution of NBI fast ion number change in the particle
phase space ( - /E v v plane) in the presence of the perturbation
amplitude =A 500 G, the perturbation frequency =f 0, the toroidal
mode number =n 3 internal kink perturbation. (a) Distribution in
the real region of the radial position < s0.15 0.36. (b)
Distribution in the real region of the radial position < s0.36 0.60.
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700 and 500 keV increases the most. Thus the NBI fast ions
are transported from < s0.15 0.36 to < s0.36 0.60
without any change in pitch angle, while the fast ion energy is
changed by the perturbation.

The NBI fast ion with an energy of 720 keV and pitch
angle of 0.8 is selected from the region where fast ion
transport occurs in figure 15. The real-space Poincaré dia-
gram is calculated and plotted. As figure 16(b) shows, the
fast ion orbit is distorted in the region of < s0.15 0.36
where NBI fast ion transport occurs. The radial position is
changed, and a magnetic island structure is present.
This structure enables the NBI fast ions to cross from the
left side to the right side of the magnetic island, which
greatly enhances fast ion transport. Hence the transport of
NBI fast ions from < s0.15 0.36 to < s0.36 0.60 is
confirmed.

5. Conclusions

Redistribution of half a million of NBI fast ions by the ideal
internal MHD instabilities in ITER has been simulated uti-
lizing the tracing particle orbit code ORBIT. Three para-
meters associated with MHD perturbations are considered in
this work: the perturbation amplitude A of the internal kink,
the perturbation frequency f of the fishbone, and the toroidal
mode number n of the internal kink. The effects of these
parameters on the transport and loss of fast ions are investi-
gated. The perturbation amplitude is assumed to be

=A 100, 300, 500 G, the perturbation frequency is assumed
to be =f 0, 20, 40, 60, 80, 100 kHz, and the toroidal mode
numbers are =n 1, 2, 3, 4.

Redistribution of NBI fast ions is found to be sensitive to
the perturbation amplitude and frequency. With the =n 1
internal kink perturbation, the NBI fast ions transport from the
region of < s0 0.32 to < s0.32 0.53. The transport
becomes greater as the perturbation amplitude increases. As
the perturbation amplitude rises to 500 G, which is 1% of the
background magnetic field in ITER, the maximum relative
change of fast ion number in the radial position approa-
ches 5%.

With respect to the effect of fishbone perturbation fre-
quency, a strong fast ion transport occurs between the regions
of < s0 0.05 and < s0.05 0.12, and higher frequency
leads to stronger transport. When the perturbation frequency
reaches 100 kHz, the number of fast ions in the region of
< s0 0.05 is reduced by 30%.
The perturbation structure with different toroidal mode

numbers n does not affect the relative change of the NBI fast
ion number in real space. But as the value of n increases, the
fast ion transport regions shift outward along the radial
direction, which is consistent with the outward excursion
of internal kink perturbations with different n in the radial
direction.

As for the loss of NBI fast ions, we find that the loss
number is independent of the perturbation amplitude A, the
perturbation frequency f and the toroidal mode number n.
This is because the internal kink mode/fishbone perturba-
tion occurs in the core region in ITER, which is a device
sufficiently large in size to allow particles to escape. Of
course, fast ion loss may occur at (unrealistically) higher
perturbation amplitude which we do not consider here.
Transport induced by MHD perturbations considered in this
work is not sufficient to cause the NBI fast ions to move to
the plasma edge and escape from the plasma. Hence the
ideal internal MHD perturbation does not affect the loss of
NBI fast ions in ITER.

Although the NBI fast ion transport induced by 100 kHz
fishbone perturbation can result in a maximum decrease of
30% in the relative value of fast ion number, the transport
regions of < s0 0.05 and < s0.05 0.12 are still located
in the core region of the plasma where the fusion reaction
mainly occurs. Thus the strong transport of NBI fast ions
triggered by high-frequency fishbone perturbations does not
affect the NBI heating power and fusion condition in ITER.
On the other hand, the particle transport from < s0 0.32
to < s0.32 0.53 can cause a 5% decrease in the fast ion
number when the perturbation amplitude reaches 500 G. The
influence of this kind of transport on the fusion condition of
ITER needs further study in the future.
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Appendix

Here are the specific expressions and equations applied by
ORBIT. First, there are Hamiltonian quantities, Lagrangian
quantities, Lagrangian equations, and magnetic field
expressions for guiding center drift motion without
perturbation:
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where r = / v B, represents the normalized parallel

gyration radius of a particle; m = ^/v B2 ,2 represents the
normalized magnetic moment of a particle; F is the
electric potential. The magnetic field can be written as

( )y q y z=  ´  -  =  ´B A,p with y q=  -A
y zp representing the magnetic vector potential; v denotes
the guiding center velocity; x labels the cyclotron phase. q is
the safety factor, ( )y q z, ,p is the magnetic surface coordi-
nates used in ORBIT, yp represents the poloidal flux
coordinates, q represents the poloidal angle, z represents the
toroidal angle. From the above equations, the equations of
particle motion without perturbation can be derived as:
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After considering the magnetic field perturbation, the
perturbation in ORBIT takes the form:

( )d a=  ´B B, A.9

where a is an arbitrary function of y q z, , ,p i.e. a =
( )a y q z, , .p From the modified canonical momentum,

Hamiltonian, poloidal and toroidal canonical momentum:
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The code ORBIT solves the above particle guiding
center equations by the fourth-order Runge–Kutta method to
obtain the orbits and distribution of particles.
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