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Abstract 

Interaction of dynamic magnetic island with bootstrap current in toroidal plasmas 

is investigated based on the first principles of kinetic simulation. The perturbed 

magnetic and electric fields associated with the dynamic magnetic island are calculated 

from a three-dimensional toroidal MHD code (CLT), instead of artificial imposed 

magnetic island perturbation. Inside the static magnetic island, the bootstrap current 

decreases as expected with the effective collision frequency. The radial electric field Er 

associated with dynamic island could cause the E×B drift, which can noticeably modify 

the bootstrap current distribution. If the bootstrap current turns on when the tearing 

mode saturates, the widths of magnetic islands ascend rapidly and saturate again for 

both static and dynamic cases. But the saturated island width of the dynamic case is 

smaller than that of the static case because the magnetic islands in the dynamic case 

rotate due to strong asymmetric distribution of the bootstrap current in the vicinity of 

the X-points. 

Keywords: bootstrap current, kinetic simulation, magnetic island, tokamak 

(Some figures may appear in colour only in the online journal) 

1. Introduction 

Tearing mode (TM) instability causes a topologic change of magnetic field in a 

rational surface to form magnetic island structures in a tokamak. The fast parallel 
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diffusion along magnetic field lines causes flattening in the temperature, density, or 

pressure profiles inside magnetic islands. The reduction of bootstrap currents inside 

magnetic islands resulting from flattening the plasma pressure will boost the 

development of the tearing mode, which is called as the neoclassical tearing mode 

(NTM)[1–3]. NTM not only constrains the maximum achievable plasma beta but also 

triggers disruptions in tokamak plasma discharges. NTM instabilities typically arise in 

high-performance plasma discharges characterized by elevated plasma beta values, 

making them a significant concern for devices like ITER operating in H-mode scenarios 

[4, 5].  

The dynamics of TM and NTM involve numerous physical processes across 

different spatial and temporal scales, including magnetic island dynamics linked to the 

curvature [6], the plasma beta [7], turbulence [8], and energetic particles [9, 10]. 

Recent simulations have focused on investigating NTM physics, exploring thresholds 

for the size of a seed island [11, 12] and an island saturation [13]. Also, the seed islands 

for the excitation of NTMs can be provided by the plasma perturbations from the core 

and/or boundary regions of tokamaks [14]. Controlling NTM in high βN plasmas is 

therefore crucial for tokamak operation. For instance, applying an RF-current at the 

rational surface where the instability occurs has been proposed [15]. In MHD 

numerical investigations of NTM [16] or double neoclassical tearing mode (DNTM) 

[17], the bootstrap current in the Ohm’s law is derived from the fluid model with an 

average over the flux surface ( )bs bs
/j f B p r=  = −  B J . It is assumed that 

the island width W is much larger than the particle banana width bw . Therefore, the 

bootstrap current completely vanishes inside a magnetic island. However, during the 

early phase of an NTM, when the seed island size W is comparable to the particle 

banana width ( bW w ) or ion poloidal Larmor radius ( iW  ), kinetic simulations 

suggest that the orbits of charged particles, especially ions, in the region around the 

island could partially overlap the island and provide the source of the pressure gradient 
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inside the island. Therefore, a significant fraction of the bootstrap current survives 

within the island [18] and the pressure gradient is maintained across the magnetic 

island, which leads to a lower growth rate of NTM due to survival of the bootstrap 

current [19].   

δf Monte Carlo calculations have been employed to study neoclassical transport 

and the bootstrap current [20–23]. Poli et al [18, 24] observed that a substantial portion 

of the ion bootstrap current can persist within the island when the width of the trapped 

ion banana orbit wb approaches the island width. If the island is too small b 1w W  , 

the drift orbits of passing ions can locate inside or outside the island. Therefore, the 

profiles of the ion density gradient and the bootstrap current almost remain unchanged. 

Wang et al investigated the recovery of ion density gradients inside islands under 

various collision regimes [25]. They suggested that the pressure gradient recovery, 

rather than finite banana-orbit effects, may play a pivotal role in maintaining the ion 

bootstrap current during NTM. However, the impact of magnetic islands on electron 

density gradients and electron bootstrap currents is more pronounced due to the smaller 

banana-orbit widths of electrons. In the presence of a magnetic island, the electron 

bootstrap current remains largely unaffected in the banana regime but is completely 

suppressed in the plateau region, with a small but finite bootstrap current existing inside 

the islands in the collisional regime. Additionally, a steeper electron density gradient at 

the island separatrix leads to a higher electron bootstrap current [26]. 

Previous bootstrap current simulations based on the δf Monte Carlo method only 

considered static and artificially imposed magnetic island perturbations in the form of 

0δ cos =B B  , where B0 is the equilibrium magnetic field, α represents the 

strength of the perturbation, and ξ is the helical angle [18, 24–26]. However, during the 

evolution of the (neoclassical) tearing mode, the magnetic island evolves over time, 

inducing an electric field E through magnetic reconnection. The parallel component of 

the electric field E//  = (E . b)b responds to plasma acceleration or deceleration along flux 

surfaces, where b = B/B is the unit vector along the field line. Moreover, as magnetic 
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field lines become stochastic, electrons are lost along these lines while ions are trapped, 

resulting in a strong radial electric field Er [27]. This radial electric field Er can 

influence the drift displacements and orbits of charged particles [28]. Furthermore, 

during the time evolution of NTM, the island rotates with plasma flow, but the 

polarization effect associated with rotating magnetic islands due to plasma flow has not 

been studied in this paper, though it remains a topic for future investigation. 

The objective of this study is to develop a kinetic-magnetohydrodynamics (MHD) 

hybrid simulation of NTM dynamics. Specifically, this simulation is akin to 

particle/MHD hybrid models such as M3D-K [29], MEGA [30], or CLT-K [31], which 

describe the interaction between energetic particles and MHD phenomena. The 

energetic particle effects enter through the particle pressure tensor in the momentum 

equation. In this simulation, the bootstrap current (Jbs) is calculated using gyro-center 

approximation particles and is incorporated into the MHD code (CLT code) through 

Ohm’s law to investigate crucial NTM dynamics, as illustrated in figure 1. Unlike the 

fluid model ( )bs /j f B p r= −   , the bootstrap current is calculated in the kinetic 

model without averaging over flux surfaces. 

In this paper, we present our results about the interaction of dynamic magnetic 

island perturbation with the bootstrap current. The perturbed magnetic δB and electric 

fields E associated with the dynamic magnetic island are calculated from a three-

dimensional toroidal MHD code (CLT), instead of artificial imposed magnetic island 

perturbation. The dynamics of magnetic islands induce an electric field which includes 

the parallel electric field E// and the radial electric field Er. The bootstrap current is 

mainly affected by the radial electric field Er rather than the parallel electric field E// 

because Er is far larger than E//. The radial electric field Er could cause the E×B drift. 

Consequently, electrons accumulate near the X point of islands, which can noticeably 

modify the electron bootstrap current. The redistributed dynamic bootstrap current 

changes the magnetic topology. This results in magnetic islands rotating. 

The paper is organized as follows. Section 2 presents the formulation and 
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verification of the neoclassical simulation scheme. Section 3 discusses the flattened 

density within magnetic islands, the bootstrap current in static and dynamic magnetic 

islands, and the response of magnetic islands to the bootstrap current. The conclusion 

is provided in section 4. 

2. Formulation and verification of neoclassical simulation 

Our primary focus in this study is the investigation of the bootstrap current within 

dynamic magnetic islands. We adopt a cylindrical coordinate system (R, ϕ, Z) and 

compute the perturbed magnetic and electric fields associated with the dynamic 

magnetic island using the CLT code [32, 33]. Specifically, we consider an equilibrium 

with q = 2 to analyze the tearing mode instability with m/n = 2/1 islands, a critical aspect 

observed in tokamak experiments. 

2.1. δf Monte Carlo method for bootstrap current with dynamic magnetic islands 

In the guiding-center phase space (X, v//), where X represents the guiding-center 

position and / /v = b X   denotes the guiding-center parallel velocity, the kinetic 

equations governing the guiding-center distribution function f with a dynamic magnetic 

island take the following form [34]: 

( )

( )

/ /

/ /

* *

/ /*

/ /

* */ /

*

/ /

d
0

d

d 1

d

d

d

f f f
f v C f

t t v

v
t B

v Ze

t mB

 
= +  + − =
 

= + 

= 

X

X
B E b

B E

                                   (1) 

where 
* *

//B = b B  signifies the effective magnetic field B* in the parallel direction, and 

E* denotes the effective electric field (see Appendix A). The electromagnetic fields 

associated with the dynamic magnetic islands are derived from the CLT code. The 

distribution function f is decomposed into a time-independent equilibrium part f0 and a 

perturbed part δf, with a local Maxwellian distribution considered for the equilibrium 
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( )0 0 Mf n f= X  . In our simulations, we assumed that the ion temperature is much 

smaller than the electron temperature   i eT T  and the quasi-neutrality is always 

satisfied i en n  , then i ep p  in the kinetic model. Thus, the bootstrap current is 

contributed solely by electrons located within an annular section of the torus. We 

employ a weighting scheme for the δf method of kinetic particle simulation [20], where 

the particle weight w = δf/f is expressed as: 

( )
2

/ / 0 0 0
/ /

e 0

d
1

d

v Bw
w v

t m B B

    
= − − + + +  

  

b b B E b
κ        (2) 

where ( )0 0 0 0 0/ 3 / 2 /n n E T T T=  + − κ  is associated with the scale parameters of the 

equilibrium gradients, eZeB m=   represents the electron gyrofrequency, and the 

terms within the brackets on the right-hand side (RHS) of equation (2) correspond to 

the neoclassical drift velocity components, including the magnetic curvature and 

gradient drifts, the guiding center velocity due to magnetic flutter drive, and the E×B 

drift velocity. The perturbed electric field E induced by magnetic reconnections is self-

consistently included in the kinetic mode in the dynamics island case. 

We track a large number of electrons (nearly a total of 6×105 electrons) distributed 

throughout the torus. The initial guiding-center positions (X) of the electrons are 

randomly determined to ensure uniform distribution in the poloidal and toroidal spaces. 

Electrons leaving the torus boundary are recycled to maintain a constant total particle 

number. The initial velocity of each electron is Maxwellian distributed within −1.5vth < 

v < 1.5vth. Following initialization, the guiding-center motions of electrons are 

determined by solving the Hamiltonian equations of motion (equation (1)) using a 

fourth-order Runge-Kutta algorithm during the orbit step. Subsequently, the guiding-

center position (X), parallel velocity (v//), and weight w of electrons are updated using 

equation (1) and (2). In the collision step, the collision operator is simulated by updating 

the electron pitch angle / /v v =  using the Monte Carlo pitch angle scattering model 
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of the Lorentz collision operator [20, 35]: 

( ) ( ) ( )
1/2

2

new old c old c1 0.5 12 1t R t     = −  + − − 
 

                         (3) 

where ∆t represents the time step size, νc is the collisional frequency. The effects of the 

Lorentz scattering operator will be reproduced if νc∆t << 1. R is a uniformly distributed 

random number between 0 and 1, λold and λnew denote the pitch angles after and before 

collision, respectively. With the specified marker weight w = δf/f, the parallel current 

density is given by [20]:  

( ) ( )3

|| / / 0 / / i 0

1

d δ δ
N

i

i

J v ev f B B ev w B B
=

= = − X X                          (4) 

where e represents the electron charge. It’s important to note that this parallel current 

includes both the Pfirsch-Schlüter current (Jps) and the bootstrap current (Jbs). The 

Pfirsch-Schlüter current (Jps = J||) can be calculated in a collisionless process (see 

Appendix B) [36]. Therefore, the bootstrap current density is given by Jbs = J|| - Jps  in a 

collisional process. The bootstrap current density Jbs has been incorporated into Ohm's 

law. The full set of resistive MHD equations is as follows [32, 33]:  

0

0

0

( ) [ ( )]

[ ( )]

( ) / [ ( )]

D
t

p
p p p p

t

p
t

t


  



 


= − +  −




= −  −  +  −




= −  +  − +  −




= −



v

v v

v
v v J B v v

B
E

                      (5) 

with  

0 bs, ( δ )= = −  + − −J B E v B J J J                                    (6) 

where ρ, p, v, B, E, and J denote the plasma density, thermal pressure, plasma velocity, 

magnetic field, electric field, and current density, respectively. The subscript “0” 

denotes the equilibrium state. The perturbation of the bootstrap current  

bs bs 0,bsδ = −J J J  has been included in Ohm’s law. Both the bootstrap current Jbs and the 

equilibrium bootstrap current J0,bs are computed in the kinetic model. The term ηJ0 
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indicates Ohmic heating to sustain the plasma current. Γ ( = 5/3) represents the ratio of 

specific heat of plasma. η, D, κ, and ν represent the resistivity, the plasma diffusion 

coefficient, the thermal conductivity, and the viscosity, respectively. The parameters are 

chosen to be η = 1.0×10−5, D = 1.0×10−5, κ⊥ = 1.0×10−6, κ|| = 5.0×10−2, and ν = 1.0×10 

−5. The variables are normalized as follows: B/B00→B, x/a→x, ρ/ρ00→ρ, v/vA→v, 

t/τA→t, p/(B00
2/μ0)→p, J/(B00/μ0a)→J, E/(vAB00)→E and η/(μ0a/τA)→η, where a is the 

minor radius, B00 and ρ00 are the initial magnetic field and the plasma density at the 

magnetic axis, respectively. 00 0 00Av B  =  and τA = a/vA are the Alfvén speed and 

Alfvén time at the magnetic axis. In the bootstrap current module, the effective collision 

frequency (
/*

c bou hnce

3

tc

2

0 /v v v qR vv  −= = ) is defined as the physical collision frequency 

( cv ) normalized by the bounce frequency (
3/2

th 0bouncev v qR= ), where ε = r/R0 is the 

inverse aspect ratio, vth is the electron thermal velocity. The relation between the Alfvén 

time and the collision time c  can be expressed as
3/2

0

*

c A( )aqR v k  − =   .  

The flow chart of kinetic NTM is shown in figure 1. We will use a high accuracy 

nonlinear MHD code, in combination with a new developed kinetic bootstrap current 

model to study crucial NTM dynamics associated with the bootstrap current. 
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2.2. Verification of bootstrap current calculation 

To benchmark our results against analytic predictions in the absence of magnetic 

islands, we adopt plasma parameters with a major radius R0 = 3 m, a minor radius a = 

1 m, and the magnetic field at the magnetic axis B0 = 1 T. A uniform mesh of size 

128×16×128 (R, ϕ, Z) is utilized for both MHD and kinetic simulations, with a 

resolution of ΔR = 0.015 m, Δϕ = 𝜋/8, and ΔZ = 0.015 m. The kinetic model employs a 

total of 6×105 particles. Employing a combination of OpenACC and MPI technologies, 

MHD simulations are further parallelized using NVIDIA GPUs [37]. 

 Figure 2(a) presents the safety factor q and the normalized density profiles ne/ne0, 

where ne0 represents the density at the magnetic axis, assuming a uniform temperature 

profile, thereby neglecting temperature gradients and simplifying equation (2) to 

0 0n n=κ . Although this simplification overlooks the contribution of the temperature 

gradients to the bootstrap current, it facilitates the model validation. In reality, the 

temperature gradients alongside the density gradients contribute to the bootstrap current. 

 

Figure 1. Flow chart of kinetic NTM includes the bootstrap current (yellow) and MHD 

modules (white). In the bootstrap current module, the δf method of the kinetic equation 

(equation (2)) is adopted with particle-in-cell (PIC). The Monte Carlo pitch angle 

scattering model (equation (3)) is implemented to update the electron pitch angle in 

collisional process. The bootstrap current Jbs computed in the kinetic model is imported 

into the Ohm’s law (equation (6)) of the MHD model. The fields are updated by a set 

of resistive MHD equations (equations (5) and (6)) and the magnetic and electric fields 

are feedback to the bootstrap current module. 
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The impact of the temperature flattening within islands on the bootstrap current profile 

parallels that of the density flattening [26, 38]. 

The flux surface average of the bootstrap current <Jbs> within a selected magnetic 

surface is computed as bs || psJ J J= − , where both Jps and J|| are obtained from 

equation (4). Jps and J|| are calculated in collisionless and collisional processes, 

respectively, shown in figure 3. The magnetic surface selected corresponds to the safety 

factor q = 2, with r = 0.45 and ε = 0.15, and a range of cases for different effective 

collision frequencies ν* are examined. The flux surface-averaged bootstrap current <Jbs> 

attains a steady state. Consequently, <Jbs> is normalized by the collisionless limit value, 

<Jbs>, calculated at a low collisional frequency ν*~10−3. In Hinton’s analytical solution 

(1976) [21, 39], the normalized analytical bootstrap current, dependent on the effective 

collision frequency ν*, is expressed as ( )* *1 1 v a v+ +  . 

Another analytical formula, based on the Sauter model [40, 41] is 

|| 31 lnj B IpL n = −   (equation (2) from reference [41]). Here, we solely consider 

the contribution of the electron density gradient. The trapped fraction at q = 2 is 

max1/
2

trap
0

1 3 / 4 d 1 0.53
B

f B B  = − − = . The coefficient L31 can be expressed as 

equation (10) for the Sauter-Redl model [41] or equation (A8) for the Sauter-Hager 

model [42]. The bootstrap current is normalized by the collisionless limit value. Figure 

4(a) illustrates the scaling of the bootstrap current with the analytical formula of the 

Sauter-Redl model. Simulation results align closely with analytic theories, 

demonstrating the accuracy of our numerical scheme in calculating the bootstrap 

current. Figure 4(b) depicts the bootstrap current reaching a steady state within several 

collision times. The timescale for the magnetic field diffusion is 
2L =  , where L 

denotes the typical length scale.  It is imperative to ensure that the magnetic topology 

changes gradually to allow the bootstrap current to reach a steady state, implying that 

the magnetic field diffusion time (   ) must exceed the collision time ( c ). In 
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subsequent simulations, the estimated magnetic field diffusion time and collision time 

are 1000τA and 300τA, respectively. 

 

 

 

Figure 2. (a) Profiles of the initial safety factor and the normalized density, (b) 

Poincaré plots of the (2, 1) magnetic islands on the poloidal cross-section of the 

toroidal angle  = 0o. 

 

Figure 3. (a) The Pfirsch-Schlüter current (Jps) is calculated without collisional 

process, (b) the parallel current (J||) in collision process, and (c) the bootstrap current 

Jbs. 
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3. Simulation results 

3.1. Electron density flattening by magnetic island 

In the subsequent section, we maintain the same initial equilibrium and parameters 

as in the previous section, depicted in figure 2(a). The instability parameter Δ́ for the 

m/n = 2/1 TM exceeds 1, indicating that the m/n = 2/1 TM is unstable [43]. The m/n = 

2/1 islands are computed using the CLT code, as illustrated in figure 2(b). The electron 

density in the kinetic model is described by ( ) ( )3

e 0

1

d 1
N

i

i i

i

n f v f w
=

= = −  − X X . Figures 

5 and 7 present surface plots of the electron density on the poloidal cross-sections at 

toroidal angles   = 0o and  = 180o, respectively. The formation of magnetic islands 

leads to flattened electron density due to a rapid parallel particle transport along 

magnetic field lines, illustrated by black dot and solid lines. The response of trapped 

and passing electrons to the magnetic island differs significantly. Passing electrons 

move rapidly along field lines, resulting in a uniform density distribution on each flux 

surface within magnetic islands. Conversely, trapped electrons exhibit a non-uniform 

density distribution due to their movement across different flux surfaces, influenced by 

 

 Figure 4. (a) Scaling of the bootstrap current <Jbs> (normalized by <Jbs> with a low 

collisional frequency ν*~10−3) as a function of the effective collisional frequency ν* 

at the q = 2 surface. The simulation result is benchmarked with the analytical 

formulae of the Hinton, Sauter-Redl, and Sauter-Hager models. (b) The time 

evolution of the bootstrap current that reaches an asymptotic value in several 

collision times.   
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the mirror effect. Consequently, the electron density profile is less flattened on the Low 

Field Side (LFS) compared to the High Field Side (HFS), as evident in figure 5(c) and 

(d). To highlight the discrepancy between HFS and LFS, figure 6 portrays the same Y-

scale in both figures 5(c) and (d) with the effective collisional frequency ν*.  

In regions of low collisionality (ν∗ < 1), electron collisions contribute to a more 

flattened electron density profile inside the islands at   = 0o on the LFS, illustrated by 

the blue solid line (ν* = 0.1) in figure 5(d) and 6(b). Similar phenomena occur at the 

poloidal cross-section with the toroidal angle  = 180o, where the O-points of the islands 

lie at the R = Raxis plane, as depicted by the blue solid line (ν* = 0.1) in figure 7(d). 

Electron collisions mitigate the discontinuity in velocity distribution at the trapped–

passing boundary. The influence of scattering from trapped to passing further flattens 

the electron density profile. However, in fully collisional plasmas (ν* > 1), strong radial 

transport diminishes the flattening of electron density profiles. As shown in figures 5, 

7(c) and (d), with a green solid line (ν* = 5), higher effective collisional frequencies 

result in weaker electron density profile fattening. 
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Figure 5. Kinetic simulation shows the surface plots of the electron density at the 

poloidal cross-section of the toroidal angle  = 0o for a static magnetic island with 

(a) ν* = 0.1 and (b) ν* = 1. To exhibit the effect of ν* on the electron density 

distribution, we draw the electron density profile at the middle plane Z = 0 together 

in (c) HFS and (d) LFS. The separatrix of the magnetic islands is also presented by 

the vertical black line in (c) and (d).  
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Figure 6. Kinetic simulation shows electron density on the HFS (dotted line) and LFS 

(solid line) with the effective collisional frequency ν*, (a) ν* = 0, (b) ν* = 0.1, (c) ν* = 1 

and (d) ν* = 5. ro,island presents the position of the O-point of magnetic island.  
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3.2. Bootstrap currents in static and dynamic magnetic islands 

We maintain the same initial equilibrium and parameters as in the previous section. 

Utilizing an initial equilibrium with q = 2, we calculate the tearing mode instability with 

m/n = 2/1 islands in the MHD model. The magnetic island is selected upon saturation 

of the tearing mode. The field comprises both perturbed magnetic (B) and electric (E) 

fields associated with magnetic islands due to magnetic reconnection. When only the 

perturbed magnetic field B is retained and the perturbed electric field E is removed 

in the kinetic model, we refer to the magnetic island as a “static magnetic island”. When 

both the perturbed electric and magnetic field (E and B) are self-consistently 

 

Figures 7. The rotation of the 2/1 magnetic islands for the toroidal angle  = 180o. 

Kinetic simulation shows surface plots of the electron density at the poloidal cross-

section with a static magnetic island for (a) ν* = 0.1 and (b) ν* = 1. To show the 

effect of ν* on the density distribution, we draw the electron density profile at the R 

= R0 plane together in Z < 0 (c) and Z > 0 (d). The separatrix of the magnetic islands 

is also presented by the vertical black line in (c) and (d). 
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included in the kinetic model, it constitutes a “dynamic magnetic island”. The 

associated bootstrap current is termed “dynamic bootstrap current”. We investigate the 

bootstrap current within “static magnetic islands” and “dynamic magnetic islands”, 

separately. 

The bootstrap currents inside the static islands with different values of the ratio 

wb/W in the banana regime have been investigated in reference [18]. Dong et al have 

studied the effect of the collisional frequency ν* on the bootstrap currents inside the 

static magnetic islands in detail [26]. In order to focus the effects of dynamic magnetic 

islands on the bootstrap currents, the results of the bootstrap current with effective 

collisional frequency ν* = 0.1 (the banana regime) are presented only.  

 

Conventional understanding suggests that a static magnetic island reduces the 

plasma pressure gradient through parallel particle transport, consequently diminishing 

the bootstrap current inside islands, as depicted in figures 8(a) and (b). However, a 

dynamic magnetic island induces a perturbed electric field (E) during the development 

 

Figure 8. (a) The bootstrap current density at the poloidal cross-section of the 

toroidal angle  = 0o together with 2-D plot for Jbs/max(Jbs) versus R at Z = 0 (black 

solid line); (b) the bootstrap current density at the poloidal cross-section of the 

toroidal angle  = 180o together with 2-D plot for Jbs/max(Jbs) versus Z at R = R0 

(black solid line). 
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of the tearing mode instability, as shown in figures 9(a) and (b). Some charged particles 

experience energy gain or loss due to acceleration or deceleration by the parallel electric 

field ( )// = E E b b  in figure 9(c). The radial electric field Er can influence the drift 

displacement and trajectory of charged particles. Therefore, the perturbed electric field 

(where E = E) induced by a dynamic magnetic island enables certain charged particles 

to cross the trapped-passing boundary and alter their orbits, significantly modifying the 

bootstrap current.  

 

Comparing with figure 8 in static magnetic islands where E = 0, we observe the 

bootstrap current affected by the perturbed electric field E in figure 10. Additionally, 

three additional modeling cases are presented in figure 10. In case (a), the bootstrap 

current is calculated with the retention of both the perturbed parallel and radial electric 

 

Figure 9. Contour plots of (a) the radial electric field Er and (b) the parallel electric 

field E// on the poloidal cross-section of the toroidal angle  = 0o for the m/n = 2/1 

tearing mode, which is corresponding to figure 11 at time = 21000τA. (c) Charged 

particles gain or loss energy because of accelerating or decelerating by the parallel 

electric field.  

 

Figure 10. Surface plots of the dynamic bootstrap current at time = 250τA after (a) 

imposing the perturbed E ( = Er + E//), (b) imposing the perturbed E// and removing 

of Er, and (c) imposing the perturbed Er and removing of E//. 
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fields (E//, Er) in figure 10(a). In case (b), E// is retained, but Er is removed in figure 10 

(b). In case (c), Er is retained, but E// is removed in figure 10(c). By comparing the 

bootstrap current density in cases (a), (b), and (c) in figure 10, we find that the bootstrap 

current density in case (a) is similar to that in case (c), rather than in case (b). The 

bootstrap current density is predominantly influenced by the radial electric field Er 

rather than the parallel electric field E// since Er is much larger than E// in the tearing 

mode instability as shown in figure 9(a) and (b). The radial electric field Er could cause 

the E×B drift, which can noticeably modify the bootstrap current. This causes the 

rotation of the magnetic island, which will be discussed in section 3.3.  

3.3. Dynamic responses of magnetic islands to bootstrap currents 

The perturbation of the bootstrap current due to the pressure flattening inside 

magnetic islands can significantly impact the growth of a tearing mode. In the general 

scenario of a classical tearing mode, the island dynamics, driven solely by magnetic 

free energy until the island saturates, are depicted by the solid black line in figure 11. 

Subsequently, the bootstrap current density is computed in “static” or “dynamic” 

magnetic islands when the tearing mode reaches saturation at time = 21000τA. At this 

point, the bootstrap current constitutes nearly 10.0 percent of the total plasma current 

at the q = 2 surface. The bootstrap current activates at time = 21000τA, as illustrated in 

the flow chart in figure 1. In subsequent simulations, the bootstrap current Jbs is 

calculated in the kinetic model and imported in Ohm’s law of the MHD model. Then, 

the fields, including the magnetic (B) and electric (E) fields, are updated using a set of 

resistive MHD equations (equations (5) and (6)). The updated B and E are imported 

from the MHD to push electrons in the kinetic model. Note that in the case of static 

magnetic islands, the electric field E is not set to 0 in the MHD model. However, E is 

artificially set to 0 to calculate the bootstrap current in the kinetic model. Therefore, the 

bootstrap currents are updated during subsequent reconnection. The dynamic responses 

of “static” or “dynamic” magnetic islands to bootstrap currents are investigated 
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respectively in the following.  

Figure 11 illustrates the time evolution of the m/n = 2/1 magnetic island driven by 

static (blue line) and dynamic (red line) bootstrap currents. The width of magnetic 

islands increases rapidly and saturates again for both cases. The saturated island width 

is 0.133a without the bootstrap current, 0.161a with the static bootstrap current, and 

0.15a with the dynamic bootstrap current. The island width with the static or dynamic 

bootstrap current increases by 21% and 14%, respectively. According to the analytical 

theory, the perturbation of the bootstrap currents plays a destabilizing role in the 

nonlinear island.  

 

We also observe that the saturated island width in the dynamic case is smaller than 

that in the static case. Additionally, magnetic islands do not rotate in the static case but 

rotate in the dynamic case, as shown in figure 12. The primary reason for this 

phenomenon is that the radial reconnection electric field Er associated with the dynamic 

island leads to an asymmetric distribution of the bootstrap current in the vicinity of the 

X-point in the kinetic part. Consequently, this asymmetric bootstrap current will cause 

the rotation of the island in the MHD part. The island rotation plays a stabilizing effect 

in the development of the tearing mode.  

 

Figure 11. Time evolutions of the width of the m/n = 2/1 magnetic island driven 

without the bootstrap current (black line)/with the bootstrap current for the static 

island (blue line)/ in the dynamic island (red line).   
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Specifically, during the reconnection process, the reconnection electric field 

modifies the orbits of electrons, resulting in a net drift of electrons. In the rest frame of 

the islands, electrons drift inside the islands under the E×B influence, subsequently 

modifying the bootstrap current, as shown in figure 13(b). Moreover, the 

asymmetrically distributed bootstrap current in the surrounding area of the X-point 

leads to the loss or gain of magnetic flux. Consequently, the saturated magnetic island 

rotates due to an asymmetric perturbation bootstrap current in the dynamic island, as 

depicted in figures 12 and 13(b). Any rotation of magnetic islands, which could also 

result from plasma toroidal rotation or diamagnetic drift effect, plays a stabilizing role 

in the development of the tearing mode. Our preliminary results suggest that the 

retaining reconnection electric field resulting from dynamic islands leads to the rotation 

and the lower saturation level of magnetic islands. 

In the present work, the radial reconnection electric field Er associated with the 

dynamic island induces island rotation, i.e., the island rotation is not associated with 

the diamagnetic effect. It is also evident that the island does not rotate in the case with 

the static island, considering only the electron population and ignoring the ion 

contribution to the bootstrap current. The initial (seed) island (at time = 21000τA) does 

not rotate because the plasma flow is zero. The time variation of the electric field E 

associated with the dynamic island is very slow ( d d 0t E ). Therefore, drift 

displacements of species caused by the polarization drift d dtE , instead of the E×B 

drift, may not be significant. In this case, the initial magnetic island width is rather large 

(W = 0.133a), so the polarization effect (~ ( )
2

bi W , bi  is the ion banana width) is not 

significant [44]. Nevertheless, the polarization effect associated with the dynamic 

island and the plasma rotation may be important, which will be investigated in future 

work. 
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We address the issue of the nonlinear NTM threshold for the m/n = 2/1 mode, 

comparing the Rutherford prediction and our kinetic-NTM simulation results. The 

evolution of the magnetic island width W with NTM can be expressed by the modified 

Rutherford’s equation as follows [45, 46]: 

 

Figure 12. Snapshots of the topology of magnetic islands for the dynamic case in 

the toroidal cross sections  = 0o, (a) time at 21000τA and (b) time at 30000τA . 

 

Figure 13. Contour plot of the bootstrap current (normalized by <J0> at the q = 2 

surface) in the static (a) and dynamic (b) magnetic island and Poincaré plots of 

magnetic islands (dotted line) for the toroidal cross section  = 0o at time = 

30000τA . 
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( )
0

' bs

0 p bs p

d
0.823 6.34

d 1/ /s q s s

jW

t B L j B W





 
 =  +
 +
 

             (7) 

where η is the resistivity. ( )
0 0 0/ 'q s sL q q r r= = , 0q  and psB  are the safety factor and the 

equilibrium poloidal magnetic field at the rational surface r = rs. The parameter '  can 

be represented in the form of W in equation (12) in reference [47].   

( )2 *
* * *

1 0.68
' 0.41 ln 4.85 0.18

2 2
s

Aa
W a b a r W

W s

   
 = + − − − −   −   

     (8) 

where ( ) '

* eq eq1 2a s L J J= −  and ( ) 2 ''

* eq eq1 2b s L J J= −  are evaluated at the rational 

surface. s  and eqJ  are the magnetic shear and the equilibrium current density. L is a 

convenient normalization scale. In our calculation, we choose a proper parameter A to 

ensure that the classical tearing mode is unstable at ( )' 0 0W =  , and the magnetic 

island saturates at W = 0.133a  for the classical tearing mode (black line), as shown in 

figure 14. Then the bootstrap current Jbs is imported at time = 15000τA when the tearing 

mode saturates. It is found that the bootstrap current is nearly 10.0 percent of the total 

plasma current at the q = 2 surface, which is the same as we do in our kinetic-NTM 

simulation. The width of the magnetic island ascends rapidly and saturates again. The 

saturated width of the magnetic island is W = 0.168a (blue line). Furthermore, we also 

carry out the cases with the bootstrap current imported at W = 0.01a (blue dashed line) 

and at W = 0.1a (red dashed line). The saturated width of the magnetic island is also W 

= 0.168a. Compared with the results shown in figures 11 and 14, we observe good 

agreement. 
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4. Conclusion 

In conclusion, our study investigates the interaction of the dynamic magnetic 

island with the bootstrap current using magnetohydrodynamic (MHD)-kinetic-hybrid 

simulation. We employed the initial equilibrium with q = 2 to examine the tearing mode 

instability with the m/n = 2/1 island, which is particularly significant in tokamak 

experiments. Instead of imposing the static and artificial magnetic island perturbations, 

we calculated the perturbed magnetic and electric fields associated with the dynamic 

magnetic islands from a MHD code (CLT). It is well known that both perturbed 

magnetic and electric fields are generated during magnetic reconnection or tearing 

mode development. If the perturbed electric field E is removed and only the perturbed 

magnetic field B retains, we call it as a “static magnetic island”. If both the perturbed 

magnetic and electric fields B and E are retained, we call it as a “dynamic magnetic 

island”.  

Here are the main findings of our study: 

 

Figure 14. The time evolutions of the width of the m/n = 2/1 magnetic island 

calculated from the Rutherford equation. The blue dashed, red dashed, blue lines are 

for the cases that the bootstrap currents were imported when W = 0.01a, 0.1a, 0.133a, 

respectively. The black line is for the case without the bootstrap current. The 

bootstrap current is nearly 10.0 percent of the total plasma current at the q = 2 surface, 

and the saturated width of the magnetic island is W = 0.168a. 
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(1) Plasma density distribution:  

Inside magnetic islands, electron density is flattened due to fast parallel transport 

of electrons along magnetic field lines. Trapped electrons predominantly reside in 

the LFS, resulting in a less flattened electron density profile in LFS compared to 

HFS. Moreover, in regions of low collisionality (ν∗ < 1), electron collisions 

contribute to further flattening of electron density profiles inside the islands. The 

effectiveness of this flattening diminishes with increasing collision frequency (ν∗) 

due to enhanced radial transport.  

(2) Effects of static and dynamic magnetic islands on bootstrap current: 

The bootstrap current is reduced as expected in islands. But in the dynamic 

magnetic island, the induced electric field significantly alters the bootstrap current 

distribution. 

(3) Dynamic responses and island rotation: 

In both static and dynamic cases, the width of the magnetic island increases rapidly 

and saturates after the onset of the bootstrap current.  In the dynamic case, the induced 

electric field significantly changes the bootstrap current distribution. The bootstrap 

current is mainly affected by the radial electric field Er. The radial electric field Er could 

cause the E×B drift. Consequently, particles accumulate near the X point of magnetic 

islands, which can noticeably modify the bootstrap current. If the bootstrap current 

turns on when the tearing mode saturates, the width of the magnetic island ascends 

rapidly and saturates again for both the static and dynamic cases. In the dynamic case, 

the distribution of the bootstrap current in the vicinity of the X-points is strong 

asymmetric, which causes the rotation of the magnetic island. The island rotation leads 

to that the saturated level of the tearing mode is smaller in the dynamic case than in the 

static case. 

In summary, our study provides insights into the complex interplay between 

magnetic islands and bootstrap currents in tokamak plasmas. The dynamic responses, 

particularly the induced rotation of magnetic islands and its impact on the tearing mode 
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saturation, are observed. The importance of considering dynamic effects in 

understanding tokamak plasma behavior is highlighted. 
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Appendix A 

In the guiding-center phase space (X, v//, μ, ζ), X and / /v = b X  denote the guiding-

center position and the guiding-center parallel velocity, respectively. μ is the magnetic 

moment and ζ is the gyrophase, which gives the location of the particle on the circle 

about the guiding center. The guiding-center phase-space Lagrangian is [34] 

gc / / gc

e
L mv J H

c


 
= +  + − 
 

A b X                                        (A.1) 

where ( )/J mc e    is the gyroaction variable. The guiding-center Hamiltonian is 

given by 

22

gc / /
2 2

E

m m
H v B e = + − − v                                       (A.2) 

The magnetic field strength B and the electric and magnetic potentials (  , A) are 

evaluated at the guiding-center position X, not at the particle position. With 

manipulations similar to those used to derive the Lorentz force 

d 1

d
m e

t c

 
= = +  

 

v
F E v B , we obtain the Euler-Lagrange equation. 
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2/ /
/ / / /

* *

dv
v v

d 2

1

E

m e
m e B m m

t t c

e
c


  

= −  +  − +  +  
  

 
 +  

 

b
b E v X B b

E X B

           (A.3) 

and the effective electromagnetic fields 

2*

/ /

*

/ /

2
E

m
e e B mv

t

e e
mv

c c




= −  +  −


= + 

b
E E v

B B b

                                 (A.4) 

the effective electromagnetic fields are defined as * *=B A   and  

* * * t=− − E A  .The effective electric and magnetic potentials 

2

*

2

* / /

2

m
e e B

B

mv

Ze

  


= + −

= +

E B

A A b

                                     (A.5) 

The electromagnetic field are t= − − E A  and =B A . We obtain the 

rate of change of the variable v// by taking the scalar product of equation (A.3) with 

the effective magnetic field B*, 

*
*/ /

*

d

d

v e

t m B
=

B
E                                                       (A.6) 

The vector product of equation (A.3) with b, using / /v = b X , yields the guiding-center 

velocity 

( )* *

/ /*

/ /

1
v c

B
= + X B E b                                            (A.7) 

where 
* *

//B = b B  is the effective magnetic field B* in the parallel direction. 

Appendix B 

In order to fully explain the Pfirsch-Schlüter current and calculate this current in 

our code, The linear MHD equations and the kinetic theory are revisited. In the 

axisymmetric equilibria, the magnetic field can be represented as g  =  + B , 
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where the ψ is the poloidal magnetic flux, g is a function of ψ, and ϕ is the toroidal 

angle. The parallel current can be calculated by combination of the force balance 

equation P = J B   in the perpendicular direction and the free divergence of the 

current density 0 =J : 

2

P

B
⊥


=

B
J                                                            (B.1) 

|| ' 'J gP B g B= − −                                                  (B.2) 

where the subscripts ⊥  and || denote the perpendicular and parallel to the magnetic field, 

respectively. P represents the pressure, and the prime denotes the derivative with 

respect to ψ. equation (B.2) actually describes the so-called Pfirsch-Schlüter current. In 

order to introduce the method of how to calculate the Pfirsch-Schlüter current in the 

code, we describe the kinetic formalism. The Vlasov equation is  

( )
d

0
d

x v

F q
F

t t m

 
= +  + +   =  

v E v B                           (B.3) 

where F is the distribution function, q and m represent the species charge and mass, 

respectively. x and v  denote the Laplace operators in the x and v space. We introduce 

the guiding center coordinates (X, ε, μ, α), where X is the guiding-center position, ε is 

the particle energy, μ is the magnetic moment, and α is the gyrophase. In order to 

linearize the Vlasov equation (B.3) in the guiding center coordinates, F is decomposed 

to the equilibrium (Fg) and perturbed (δFg) parts. Hence, the equilibrium Vlasov 

equation becomes [36], 

g 0F


 
 + = 

 
X

X                                             (B.4) 

where 

( )

|| b d

1 

= +

= − +

X v e v

X
                                                 (B.5) 

where v|| is the velocity of the guiding center in the direction of the magnetic field, 

dv  is the drift velocity, including the magnetic curvature and gradient drift, ZeB m =  
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is the gyrofrequency, the 1 term is resulted from the guiding center transform of the 

gyrofrequency. The lowest order equilibrium Vlasov equation (B.4) becomes 

|| b 0v F


 
 − = 

 
e g0                                                     (B.6) 

The lowest order solution is the isotropic Maxwellian equilibrium distribution function 

( )0 0 MgF n f= X . After taking gyrophase average, the next order kinetic equation is  

|| b g1 d g0 0v F F +  =X Xe v                                         (B.7)     

The solution is  

( ) ( )g0
g1g1 || sign , ,

Fg
F v v F   




= − +

 
                            (B.8) 

where g1F is the integration constant. We has  

( ) 3 3

g0 g1 g0

3

b g0

2

d d

1
d

i i

i i

i

i

q F F v q v F

q v F

p

B

⊥ ⊥ ⊥

⊥

= + =

=  



=

  

 

J v v

v e

B

                          (B.9) 

Noting that Fg1 does not contribute to the perpendicular current density due to being 

odd in v||. Therefore, 

( )

( )

3 3

|| || g0 g1 || g1

g1

d d

'
d d , ,

i i

i i

i

i

J q v F F v q vv F

gp
B q F

B
    

= + =

= − −

  

 
                      (B.10) 

It should also be noted that Fg0 does not contribute to the parallel current density due to 

being even in v||. As mention in reference [36], we have ( )g1d d , , 'i

i

q F g     =  . 

Therefore, both equation (B.2) and equation (B.10) describe the Pfirsch-Schlüter 

current in collisionless process. In our code, the distribution f is decomposed into an 

equilibrium part ( )0 0 Mf n f= X and a perturbed part δf ( = Fg1). The Pfirsch-Schlüter 

current (Jps  = J||) can be calculated in collisionless process. 

Page 29 of 31

https://mc03.manuscriptcentral.com/pst

AUTHOR SUBMITTED MANUSCRIPT - PST-2024-0321.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 30 / 31 

 

References 

[1] Qu W X and Callen J D 1985 Nonlinear growth of a single neoclassical MHD tearing mode 

in a tokamak Madison: University of Wisconsin 

[2] Carrera R, Hazeltine R D and Kotschenreuther M 1986 Phys. Fluids 29 899 

[3] Chang Z et al 1995 Phys. Rev. Lett. 74 4663 

[4] La Haye R J 2006 Phys. Plasmas 13 055501 

[5] Igochine V 2015 Active Control of Magneto-Hydrodynamic Instabilities in Hot Plasmas 

(Berlin, Heidelberg: Springer) 

[6] Lütjens H, Luciani J F and Garbet X 2001 Phys. Plasmas 8 4267 

[7] Muraglia M et al 2009 Nucl. Fusion 49 055016 

[8] Cai H S 2019 Nucl. Fusion 59 026009 

[9] Cai H S et al 2011 Phys. Rev. Lett. 106 075002 

[10] Ishizawa A et al 2021 Nucl. Fusion 61 114002 

[11] Maget P et al 2010 Nucl. Fusion 50 045004 

[12] Muraglia M et al 2017 Nucl. Fusion 57 072010 

[13] Maget P et al 2016 Nucl. Fusion 56 086004 

[14] Wei L et al 2016 Nucl. Fusion 56 106015 

[15] Widmer F et al 2019 Nucl. Fusion 59 106012 

[16] Yu Q 2020 Nucl. Fusion 60 084001 

[17] Wang Z X, Wei L and Yu F 2015 Nucl. Fusion 55 043005 

[18] Poli E et al 2003 Plasma Phys. Control. Fusion 45 71 

[19] Imada K et al 2019 Nucl. Fusion 59 046016 

[20] Lin Z, Tang W M and Lee W W 1995 Phys. Plasmas 2 2975 

[21] Kim K et al 2012 Phys. Plasmas 19 082503 

[22] Sasinowski M and Boozer A H 1995 Phys. Plasmas 2 610 

[23] Sasinowski M and Boozer A H 1997 Phys. Plasmas 4 3509 

[24] Poli E et al 2002 Phys. Rev. Lett. 88 075001 

[25] Wang F et al 2019 Phys. Plasmas 26 052516 

[26] Dong G and Lin Z 2017 Nucl. Fusion 57 036009 

[27] Suzuki Y et al 2013 Plasma Phys. Control. Fusion 55 124042 

[28] Liu Y W et al 2005 Plasma Sci. Technol. 7 2801 

[29] Fu G Y et al 2006 Phys. Plasmas 13 052517 

[30] Todo Y and Sato T 1998 Phys. Plasmas 5 1321 

[31] Zhang H W et al 2022 Nucl. Fusion 62 026047 

[32] Wang S and Ma Z W 2015 Phys. Plasmas 22 122504.  

[33] Zhang W et al 2021 Comput. Phys. Commun. 269 108134 

[34] Cary J R and Brizard A J 2009 Rev. Mod. Phys. 81 693 

[35] Boozer A H and Kuo-Petravic G 1981 Phys. Fluids 24 851 

[36] Zheng L J 2015 Advanced Tokamak Stability Theory (San Rafael: Morgan & Claypool 

Publishers)  

[37] Zhang H W et al 2019 Int. J. Comput. Fluid Dyn. 33 393 

Page 30 of 31

https://mc03.manuscriptcentral.com/pst

AUTHOR SUBMITTED MANUSCRIPT - PST-2024-0321.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 31 / 31 

 

[38] Choi M J et al 2014 Nucl. Fusion 54 083010 

[39] Hinton F L and Hazeltine R D 1976 Rev. Mod. Phys. 48 239 

[40] Sauter O, Angioni C and Lin-Liu Y R 1999 Phys. Plasmas 6 2834 

[41] Redl A et al 2021 Phys. Plasmas 28 022502 

[42] Hager R and Chang C S 2016 Phys. Plasmas 23 042503 

[43] Hegna C C and Callen J D 1994 Phys. Plasmas 26 2308 

[44] Wilson H R et al 1996 Phys. Plasmas 3 248  

[45] Yu Q Q and Günter S 1998 Plasma Phys. Control. Fusion 40 1989 

[46] Yu Q, Günter S and Lackner K 2004 Phys. Plasmas 11 140 

[47] Hastie R J, Militello F and Porcelli F 2005 Phys. Rev. Lett. 95 065001 

 

Page 31 of 31

https://mc03.manuscriptcentral.com/pst

AUTHOR SUBMITTED MANUSCRIPT - PST-2024-0321.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t


