Advanced Search+
ZHENG Pingwei(郑平卫), GONG Xueyu(龚学余), YU Jun(余俊), DU Dan(杜丹). Fully Implicit Iterative Solving Method for the Fokker-Planck Equation in Tokamak Plasmas[J]. Plasma Science and Technology, 2014, 16(11): 1000-1006. DOI: 10.1088/1009-0630/16/11/02
Citation: ZHENG Pingwei(郑平卫), GONG Xueyu(龚学余), YU Jun(余俊), DU Dan(杜丹). Fully Implicit Iterative Solving Method for the Fokker-Planck Equation in Tokamak Plasmas[J]. Plasma Science and Technology, 2014, 16(11): 1000-1006. DOI: 10.1088/1009-0630/16/11/02

Fully Implicit Iterative Solving Method for the Fokker-Planck Equation in Tokamak Plasmas

  • A three dimensional bounce-averaged Fokker-Planck (FP) numerical code has been newly developed based on fully implicit iterative solving method, and relativistic effect is also included in the code. The code has been tested against various benchmark cases: Ohmic con- ductivity in the presence of weak Ohmic electric field, runaway losses of electrons in the presence of strong Ohmic electric field, lower hybrid current drive and electron cyclotron current drive via two- or three-dimensional simulation. All the test cases run fast and correctly during calculations. As a result, the code provides a set of powerful tools for studying radio frequency wave heating and current drive in tokamak plasmas.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return