Advanced Search+
Manjeet SINGH, Arnab SARKAR. Time-resolved evaluation of uranium plasma in different atmospheres by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(12): 125501. DOI: 10.1088/2058-6272/aad866
Citation: Manjeet SINGH, Arnab SARKAR. Time-resolved evaluation of uranium plasma in different atmospheres by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(12): 125501. DOI: 10.1088/2058-6272/aad866

Time-resolved evaluation of uranium plasma in different atmospheres by laser-induced breakdown spectroscopy

  • This work reports spectroscopic studies of uranium containing plasma generated in air and argon environments. The 532 nm Q-switched Nd:YAG laser generates the optical breakdown plasma, which was recorded by a spectrometer and an intensified charge coupled device having a resolution of 25 pm. Neutral and ionized uranium lines in the wavelength range of 385.8–391.9 nm indicate significant width and shift variations during the first few microseconds. Electron temperature and density of the plasma are determined using the Boltzmann plot and the Saha–Boltzmann equation at various time delay. The study reveals the power law decay pattern of electron temperature and density, which changes to exponential decay pattern if large gate- width is used to acquire the signal, due to an averaging effect.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return