Advanced Search+
Qiang LIU (刘强), Qi MIN (敏琦), Maogen SU (苏茂根), Xingbang LIU (刘兴邦), Shiquan CAO (曹世权), Duixiong SUN (孙对兄), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state[J]. Plasma Science and Technology, 2021, 23(12): 125001. DOI: 10.1088/2058-6272/ac2815
Citation: Qiang LIU (刘强), Qi MIN (敏琦), Maogen SU (苏茂根), Xingbang LIU (刘兴邦), Shiquan CAO (曹世权), Duixiong SUN (孙对兄), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state[J]. Plasma Science and Technology, 2021, 23(12): 125001. DOI: 10.1088/2058-6272/ac2815

Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state

Funds: This work is supported by the National Key Research and Development Program of China (No. 2017YFA0402300), National Natural Science Foundation of China (Nos. 11904293, 12064040 and 11874051), the Science and technology project of Gansu Province (No. 20JR5RA530), the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University (No. NWNU-LKQN-18-32), and the Funds for Innovative Fundamental Research Group Project of Gansu Province (No. 20JR5RA541).
More Information
  • Received Date: May 08, 2021
  • Revised Date: September 14, 2021
  • Accepted Date: September 17, 2021
  • Based on the governing equations which include the heat conduction equation in the target and the fluid equations of the vapor plasma, a two-dimensional axisymmetric model for ns-laser ablation considering the Knudsen layer and plasma shielding effect is developed. The equations of state of the plasma are described by a real gas approximation, which divides the internal energy into the thermal energy of atoms, ions and electrons, ionization energy and the excitation energy of atoms and ions. The dynamic evolution of the silicon target and plasma during laser ablation is studied by using this model, and the distributions of the temperature, plasma density, Mach number related to the evaporation/condensation of the target surface, laser transmissivity as well as internal energy of the plasma are given. It is found that the evolution of the target surface during laser ablation can be divided into three stages: (1) the target surface temperature increases continuously; (2) the sonic and subsonic evaporation; and (3) the subsonic condensation. The result of the internal energy distribution indicates that the ionization and excitation energy plays an important role in the internal energy of the plasma during laser ablation. This model is suitable for the case that the temperature of the target surface is lower than the critical temperature.
  • [1]
    Dubey A K and Yadava V 2008 Int. J. Mach. Tools Manuf.48 609
    [2]
    Christen H M and Eres G 2008 J. Phys.: Condens. Matter 20 264005
    [3]
    Irissou E et al 2006 J. Appl. Phys. 99 034904
    [4]
    Miziolek A W, Palleschi V and Schechter I 2006 LaserInduced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge: Cambridge University Press)
    [5]
    Hahn D W and Omenetto N 2010 Appl. Spectrosc. 64 335A
    [6]
    Musztyfaga-Staszuk M M 2017 Int. J. Thermophys. 38 130
    [7]
    Dobrzański L A et al 2006 Mater. Sci. Forum 530–531 334
    [8]
    Aguilera J A, Aragón C and Peñalba F 1998 Appl. Surf. Sci.127–129 309
    [9]
    Amoruso S et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R131
    [10]
    Lee D H et al 2011 Appl. Phys. A 104 863
    [11]
    Myong R S 2016 Phys. Fluids 28 012002
    [12]
    Gusarov A V and Smurov I 2002 Phys. Fluids 14 4242
    [13]
    Lilley C R and Sader J E 2008 Proc. R. Soc. A 464 2015
    [14]
    Autrique D et al 2013 J. Appl. Phys. 114 023301
    [15]
    Zel’dovich Y B and Raizer Y P 2002 Physics of Shock Waves and High-temperature Hydrodynamic Phenomena (New York: Dover)
    [16]
    Amoruso S 1999 Appl. Phys. A 69 323
    [17]
    Clair G and L’Hermite D 2011 J. Appl. Phys. 110 083307
    [18]
    Ho J R, Grigoropoulos C P and Humphrey J A C 1996 J. Appl.Phys. 79 7205
    [19]
    Tao S et al 2012 Appl. Surf. Sci. 258 7766
    [20]
    Chen Z Y and Bogaerts A 2005 J. Appl. Phys. 97 063305
    [21]
    Wu B X and Shin Y C 2006 J. Appl. Phys. 99 084310
    [22]
    Mazhukin V I, Nossov V V and Smurov I 2007 J. Appl. Phys.101 024922
    [23]
    Zhang Z Y, Han Z X and Dulikravich G S 2001 J. Appl. Phys.90 5889
    [24]
    Fu C L, Wang Q and Ding H B 2018 Plasma Sci. Technol. 20 085501
    [25]
    Shabanov S V and Gornushkin I B 2014 Spectrochim. Acta B 100 147
    [26]
    Tian Z F and Ge Y B 2007 J. Comput. Appl. Math. 198 268
    [27]
    Makhov D V and Lewis L J 2003 Phys. Rev. B 67 153202
    [28]
    Yoo J H et al 2000 J. Appl. Phys. 88 1638
    [29]
    Knight C J 1979 AIAA J. 17 519
    [30]
    Min Q et al 2016 Opt. Lett. 41 5282
    [31]
    Min Q et al 2018 J. Quant. Spectrosc. Radiat. Transf.210 189
    [32]
    Wang K P et al 2020 Phys. Plasmas 27 063513

Catalog

    Article views (263) PDF downloads (539) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return