Advanced Search+
Bo ZHU, Ximu HAN, He SU, Xiangjie MA, Guoyan WU. Study on discharge characteristics of low-temperature sub-atmospheric pressure under steep change rate voltage[J]. Plasma Science and Technology, 2025, 27(1): 015401. DOI: 10.1088/2058-6272/ad85bc
Citation: Bo ZHU, Ximu HAN, He SU, Xiangjie MA, Guoyan WU. Study on discharge characteristics of low-temperature sub-atmospheric pressure under steep change rate voltage[J]. Plasma Science and Technology, 2025, 27(1): 015401. DOI: 10.1088/2058-6272/ad85bc

Study on discharge characteristics of low-temperature sub-atmospheric pressure under steep change rate voltage

More Information
  • Aiming at the gas discharge problem in electric aircraft, this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure. A gas discharge shooting platform was built, and the discharge process was photographed by intensified charge-coupled device (ICCD). A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established, and three sets of Helmholtz equations were used to solve the photoionization. The results show that under the same voltage, the electric field intensity in the discharge process increases first, then decreases and finally increases again. The discharge speed increases with the increase of altitude, and the electron density in the streamer decreases with the increase of altitude. The development speed of the streamer in the middle stage is higher than that in the early stage, and the speed increases more obviously with the increase of altitude. The development speed of the streamer in the later stage is lower than that in the middle stage, but with the increase of altitude, the development speed of the streamer in the later stage is higher than that in the middle stage.

  • [1]
    Sayed E et al 2021 IEEE Trans. Transp. Electrif. 7 2976 doi: 10.1109/tte.2021.3089605
    [2]
    Zhao Z H et al 2022 IEEE Trans. Plasma Sci. 50 2333 doi: 10.1109/tps.2022.3186808
    [3]
    Zhao Z H et al 2023 Proc. CSEE 43 4034 doi: 10.13334/j.0258-8013.pcsee.213012
    [4]
    Zhao Z et al 2023 Proc. CSEE 44 3347 doi: 10.13334/j.0258-8013.pcsee.223049
    [5]
    Hao Y P, Zheng B and Liu Y G 2012 High Voltage Eng. 38 1568 (in Chinese) doi: 10.3969/j.issn.1003-6520.2012.07.005
    [6]
    Nijdam S et al 2010 J. Phys. D: Appl. Phys. 43 145204 doi: 10.1088/0022-3727/43/14/145204
    [7]
    Chen S, Zeng R and Zhuang C J 2013 J. Phys. D: Appl. Phys. 46 375203 doi: 10.1088/0022-3727/46/37/375203
    [8]
    Zheleznyak M B, Mnatsakanyan A K and Sizykh S V 1982 Teplofiz. Vys. Temp. 20 423
    [9]
    Bourdon A et al 2007 Plasma Sources Sci. Technol. 16 656 doi: 10.1088/0963-0252/16/3/026
    [10]
    Cai X J et al 2015 Proc. CSEE 35 240 doi: 10.13334/j.0258-8013.pcsee.2015.01.029
    [11]
    Herrmann A, Margot J and Hamdan A 2024 Plasma Sources Sci. Technol. 33 025022 doi: 10.1088/1361-6595/ad286f
    [12]
    Vass M et al 2024 Plasma Sources Sci. Technol. 33 015012 doi: 10.1088/1361-6595/ad1f37
    [13]
    Simonchik L et al 2024 Plasma Sources Sci. Technol. 33 025014 doi: 10.1088/1361-6595/ad2580
    [14]
    Niu H Q et al 2021 High Voltage Eng. 47 4063 doi: 10.13336/j.1003-6520.hve.20200661
    [15]
    Ai J W et al 2021 High Voltage Eng. 47 4377 doi: 10.13336/j.1003-6520.hve.20210060
    [16]
    Wang J et al 2022 High Volt. 7 439 doi: 10.1049/hve2.12156
    [17]
    Zhao Z H et al 2022 IEEE Trans. Plasma Sci. 50 2786 doi: 10.1109/tps.2022.3188756
    [18]
    You Q et al 2020 Ann. Nucl. Energy. 141 107351 doi: 10.1016/j.anucene.2020.107351
    [19]
    Leng X J et al 2025 J. At. Mol. Phys. 42 100 doi: 10.19855/j.1000-0364.2025.033001
    [20]
    Luque A et al 2007 Appl. Phys. Lett. 90 081501 doi: 10.1063/1.2435934
    [21]
    Zhao Z H et al 2021 IEEE Access 9 51896 doi: 10.1109/access.2021.3070335
    [22]
    Kossyi I A et al 1992 Plasma Sources Sci. Technol. 1 207 doi: 10.1088/0963-0252/1/3/011
    [23]
    Liu L P and Becerra M 2017 J. Phys. D: Appl. Phys. 50 345202 doi: 10.1088/1361-6463/aa7c71
  • Related Articles

    [1]Qifan ZHANG, Yiping HAN, Qinlu DONG, Chang DONG. Analysis of the influence of sheath positions, flight parameters and incident wave parameters on the wave propagation in plasma sheath[J]. Plasma Science and Technology, 2022, 24(3): 035003. DOI: 10.1088/2058-6272/ac2e53
    [2]Jianyi CHEN (陈建义), Chengxun YUAN (袁承勋), Xiudong SUN (孙秀冬), Lei HUO (霍雷). Transmissivity of electromagnetic wave propagating in magnetized plasma sheath using variational method[J]. Plasma Science and Technology, 2019, 21(12): 125001. DOI: 10.1088/2058-6272/ab4199
    [3]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [4]Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8
    [5]Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab
    [6]WANG Maoyan (王茂琰), ZHANG Meng (张猛), LI Guiping (李桂萍), JIANG Baojun (姜宝钧), ZHANG Xiaochuan (张小川), XU Jun (徐军). FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(8): 798-803. DOI: 10.1088/1009-0630/18/8/02
    [7]NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09
    [8]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [9]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [10]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04

Catalog

    Article views (46) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return