Citation: | Yumin WANG, Kai LI, Zhuo HUANG, Yiliang LIU, Shuyu DAI, Jie ZHANG, Yanqing HUANG, Xiang GU, Yihang ZHAO, Shuai XU, Erhui WANG, Dong GUO, Yuejiang SHI, Huasheng XIE, Yunfeng LIANG, Minsheng LIU, the EHL-2 Team. Predictions of H-mode access and edge pedestal instability in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024005. DOI: 10.1088/2058-6272/ad9f27 |
The EHL-2 spherical torus is designed to demonstrate proton-boron (p-11B) fusion within a compact spherical tokamak. Its planned heating system includes a negative ion-based neutral beam injection (N-NBI), two positive ion-based NBI systems (P-NBI), electron cyclotron resonance heating (ECRH), ion cyclotron resonance heating (ICRH), and high harmonic fast wave (HHFW), with a total power output of 31 MW. According to scaling law estimates, the device is capable of achieving H-mode operation. The plasma density, ne,min, at the minimum L-H power threshold, PLH, is estimated to be 4.4×1019 m−3. The pedestal parameters were calculated using the REPED model. Assuming B as the primary impurity ion, the predicted pedestal width and height are lower compared to the typical case with carbon impurities. The pedestal collisionality for EHL-2 is estimated to range between 0.06 and 0.17, indicating the potential for significant energy loss due to edge localized modes (ELMs). The heat flux on the divertor plate has been calculated using the JOREK code. The peak heat fluxes during ELM bursts are approximately 31.0 MW/m2 at the lower inboard target and 39.5 MW/m2 at the lower outboard target. A preliminary design of the resonant magnetic perturbation (RMP) coils has been completed to both control type-I ELMs and correct error fields. The system comprises 16 coils arranged into 2×4 pairs. In ELM control mode, a 14/2 component is generated at 1.7 G/kAt, with a current of 4.9 kA required to achieve σChirikov=1 at the resonant surface, where the normalized poloidal magnetic flux is 0.85. In error field (EF) modulation mode, 2/1 and 3/1 components are generated at 3.5 G/kAt and 2.8 G/kAt, respectively.
This work was performed under the auspices of National Natural Science Foundations of China (Nos. 12075284 and 12205157). This work was supported by the High-End Talents Program of Hebei Province, Innovative Approaches towards Development of Carbon-Free Clean Fusion Energy (No. 2021HBQZYCSB006).
[1] |
Liu M S et al 2024 Phys. Plasmas 31 062507 doi: 10.1063/5.0199112
|
[2] |
Liang Y F et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad981a
|
[3] |
Shimada M et al 2007 Nucl. Fusion 47 S1 doi: 10.1088/0029-5515/47/6/S01
|
[4] |
Kurskiev G et al 2022 Nucl. Fusion 62 016011 doi: 10.1088/1741-4326/ac38c9
|
[5] |
Wagner F et al 1982 Phys. Rev. Lett. 49 1408 doi: 10.1103/PhysRevLett.49.1408
|
[6] |
Urano H 2014 Nucl. Fusion 54 116001 doi: 10.1088/0029-5515/54/11/116001
|
[7] |
Snyder P B et al 2011 Nucl. Fusion 51 103016 doi: 10.1088/0029-5515/51/10/103016
|
[8] |
Connor J W 1998 Plasma Phys. Control. Fusion 40 531 doi: 10.1088/0741-3335/40/5/002
|
[9] |
Kirk A et al 2013 Plasma Phys. Control. Fusion 55 124003 doi: 10.1088/0741-3335/55/12/124003
|
[10] |
Liang Y 2011 Fusion Sci. Technol. 59 586 doi: 10.13182/FST11-A11699
|
[11] |
Lang P T et al 2013 Nucl. Fusion 53 043004 doi: 10.1088/0029-5515/53/4/043004
|
[12] |
Lang P T et al 2007 Nucl. Fusion 47 754 doi: 10.1088/0029-5515/47/8/005
|
[13] |
Evans T E et al 2006 Nat. Phys. 2 419 doi: 10.1038/nphys312
|
[14] |
Liang Y et al 2010 Phys. Rev. Lett. 105 065001 doi: 10.1103/PhysRevLett.105.065001
|
[15] |
Martin Y R et al 2008 J. Phys.: Conf. Ser. 123 012033 doi: 10.1088/1742-6596/123/1/012033
|
[16] |
Takizuka T 2004 Plasma Phys. Control. Fusion 46 A227 doi: 10.1088/0741-3335/46/5A/024
|
[17] |
Jiang X C et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae71
|
[18] |
Andrew Y et al 2006 Plasma Phys. Control. Fusion 48 479 doi: 10.1088/0741-3335/48/4/001
|
[19] |
Ryter F et al 2013 Nucl. Fusion 53 113003 doi: 10.1088/0029-5515/53/11/113003
|
[20] |
Zhong W L et al 2020 Nucl. Fusion 60 082002 doi: 10.1088/1741-4326/ab868d
|
[21] |
Huang C B et al 2016 Plasma Phys. Control. Fusion 58 075005 doi: 10.1088/0741-3335/58/7/075005
|
[22] |
Howlett L et al 2023 Nucl. Fusion 63 052001 doi: 10.1088/1741-4326/acc2cf
|
[23] |
Ryter F et al 2014 Nucl. Fusion 54 083003 doi: 10.1088/0029-5515/54/8/083003
|
[24] |
Maggi C F et al 2014 Nucl. Fusion 54 023007 doi: 10.1088/0029-5515/54/2/023007
|
[25] |
Liu Z X et al 2013 Nucl. Fusion 53 073041 doi: 10.1088/0029-5515/53/7/073041
|
[26] |
Philipps V 2005 Fusion Sci. Technol. 47 119 doi: 10.13182/FST05-A693
|
[27] |
Winter J et al 1989 J. Nucl. Mater. 162–164 713 doi: 10.1016/0022-3115(89)90352-8
|
[28] |
Dylla H F et al 1990 J. Nucl. Mater. 176–177 337 doi: 10.1016/0022-3115(90)90069-Y
|
[29] |
Jackson G L et al 1992 J. Nucl. Mater. 196–198 236 doi: 10.1016/S0022-3115(06)80038-3
|
[30] |
Boucher C et al 1992 J. Nucl. Mater. 196–198 587 doi: 10.1016/S0022-3115(06)80104-2
|
[31] |
Esser H G et al 1992 J. Nucl. Mater. 186 217 doi: 10.1016/0022-3115(92)90339-M
|
[32] |
Saidoh M et al 1993 Fusion Eng. Des. 22 271 doi: 10.1016/0920-3796(93)90122-X
|
[33] |
Wu J H et al 2011 J. Nucl. Mater. 415 S1046 doi: 10.1016/j.jnucmat.2010.10.089
|
[34] |
Sereda S et al 2020 Nucl. Fusion 60 086007 doi: 10.1088/1741-4326/ab937b
|
[35] |
Rohde V et al 2007 J. Nucl. Mater. 363–365 1369 doi: 10.1016/j.jnucmat.2007.01.200
|
[36] |
Neu R et al 1996 Rev. Sci. Instrum. 67 1829 doi: 10.1063/1.1147522
|
[37] |
Shi Y J et al 2022 Nucl. Fusion 62 086047 doi: 10.1088/1741-4326/ac71b6
|
[38] |
Kessel C E et al 2018 Nucl. Fusion 58 056007 doi: 10.1088/1741-4326/aab1b7
|
[39] |
Solano E R et al 2021 Nucl. Fusion 61 124001 doi: 10.1088/1741-4326/ac2b76
|
[40] |
Solano E R et al 2022 Nucl. Fusion 62 076026 doi: 10.1088/1741-4326/ac4ed8
|
[41] |
Gohil P et al 2011 Nucl. Fusion 51 103020 doi: 10.1088/0029-5515/51/10/103020
|
[42] |
Zhang B et al 2020 Nucl. Fusion 60 092001 doi: 10.1088/1741-4326/ab9be6
|
[43] |
Hakola A et al 2024 Nucl. Fusion 64 096022 doi: 10.1088/1741-4326/ad6335
|
[44] |
Yan Z et al 2017 Nucl. Fusion 57 126015 doi: 10.1088/1741-4326/aa82c9
|
[45] |
Wang Y M et al 2018 Nucl. Fusion 58 026026 doi: 10.1088/1741-4326/aa9f7d
|
[46] |
Gu X et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae72
|
[47] |
Li K et al 2020 Plasma Phys. Control. Fusion 62 115007 doi: 10.1088/1361-6587/abb522
|
[48] |
Li K et al 2021 Nucl. Fusion 61 096002 doi: 10.1088/1741-4326/ac0f97
|
[49] |
Snyder P B et al 2009 Phys. Plasmas 16 056118 doi: 10.1063/1.3122146
|
[50] |
Crotinger J A et al 1997 Corsica: a comprehensive simulation of toroidal magnetic-fusion devices Final report to the LDRD Program. No UCRL-ID-126284 Livermore: Lawrence Livermore National Lab.
|
[51] |
Connor J W et al 1998 Phys. Plasmas 5 2687 doi: 10.1063/1.872956
|
[52] |
Snyder P B and Wilson H R 2003 Plasma Phys. Control. Fusion 45 1671 doi: 10.1088/0741-3335/45/9/308
|
[53] |
Sauter O. et al 1999 Phys. Plasmas 6 2834 doi: 10.1063/1.873240
|
[54] |
Sauter O. et al 2002 Phys. Plasmas 9 5140 doi: 10.1063/1.1517052
|
[55] |
Smith S F et al 2022 Plasma Phys. Control. Fusion 64 045024 doi: 10.1088/1361-6587/ac529b
|
[56] |
Kirk A et al 2007 Plasma Phys. Control. Fusion 49 1259 doi: 10.1088/0741-3335/49/8/011
|
[57] |
Loarte A et al 2003 Plasma Phys. Control. Fusion 45 1549 doi: 10.1088/0741-3335/45/9/302
|
[58] |
Oyama N et al 2006 Plasma Phys. Control. Fusion 48 A171 doi: 10.1088/0741-3335/48/5A/S16
|
[59] |
Hoelzl M. et al 2021 Nucl. Fusion 61 065001 doi: 10.1088/1741-4326/abf99f
|
[60] |
Pamela S J P et al 2011 Plasma Phys. Control. Fusion 53 054014 doi: 10.1088/0741-3335/53/5/054014
|
[61] |
Hölzl M et al 2012 Phys. Plasmas 19 082505 doi: 10.1063/1.4742994
|
[62] |
Huysmans G T A and Czarny O 2007 Nucl. Fusion 47 659 doi: 10.1088/0029-5515/47/7/016
|
[63] |
Bogaarts T J et al 2022 Phys. Plasmas 29 122501 doi: 10.1063/5.0119435
|
[64] |
Korving S Q et al 2023 Phys. Plasmas 30 042509 doi: 10.1063/5.0135318
|
[65] |
Evans T E et al 2004 Phys. Rev. Lett. 92 235003 doi: 10.1103/PhysRevLett.92.235003
|
[66] |
Liang Y et al 2007 Phys. Rev. Lett. 98 265004 doi: 10.1103/PhysRevLett.98.265004
|
[67] |
Hender T C et al 2007 Nucl. Fusion 47 S128 doi: 10.1088/0029-5515/47/6/S03
|
[68] |
Yang S M et al 2024 Nat. Commun. 15 1275 doi: 10.1038/s41467-024-45454-1
|
[69] |
Darke A C et al 2005 Fusion Eng. Des. 75–79 285 doi: 10.1016/j.fusengdes.2005.06.059
|
[70] |
Maingi R et al 2010 Nucl. Fusion 50 064010 doi: 10.1088/0029-5515/50/6/064010
|
[71] |
Sun Z et al 2021 Nucl. Fusion 61 014002 doi: 10.1088/1741-4326/abc763
|
[72] |
Peng L et al 2021 Nucl. Mater. Energy 26 100937 doi: 10.1016/j.nme.2021.100937
|
[73] |
Afonin K et al 2023 Nucl. Fusion 63 126057 doi: 10.1088/1741-4326/ad0597
|
[74] |
Bortolon A et al 2020 Nucl. Fusion 60 126010 doi: 10.1088/1741-4326/abaf31
|
[75] |
Viezzer E et al 2023 Nucl. Mater. Energy 34 101308 doi: 10.1016/j.nme.2022.101308
|
[76] |
Whyte D G et al 2010 Nucl. Fusion 50 105005 doi: 10.1088/0029-5515/50/10/105005
|
[77] |
Ryter F et al 1998 Plasma Phys. Control. Fusion 40 725 doi: 10.1088/0741-3335/40/5/032
|
[78] |
Marinoni A et al 2015 Nucl. Fusion 55 093019 doi: 10.1088/0029-5515/55/9/093019
|
[79] |
Feng X et al 2019 Nucl. Fusion 59 096025 doi: 10.1088/1741-4326/ab28a7
|
[80] |
Liu Y J et al 2020 Nucl. Fusion 60 082003 doi: 10.1088/1741-4326/ab88e0
|
[81] |
Song Y T et al 2023 Sci. Adv. 9 eabq5273 doi: 10.1126/sciadv.abq5273
|
[82] |
Greenfield C M et al 2001 Phys. Rev. Lett. 86 4544 doi: 10.1103/PhysRevLett.86.4544
|
[83] |
Greenfield C M et al 2002 Plasma Phys. Control. Fusion 44 A123 doi: 10.1088/0741-3335/44/5A/308
|
[84] |
Suttrop W et al 2003 Plasma Phys. Control. Fusion 45 1399 doi: 10.1088/0741-3335/45/8/302
|
[85] |
Solano E R et al 2010 Phys. Rev. Lett. 104 185003 doi: 10.1103/PhysRevLett.104.185003
|
[86] |
Kamiya K et al 2021 Commun. Phys. 4 141 doi: 10.1038/s42005-021-00644-x
|
[87] |
Greenwald M et al 1999 Phys. Plasmas 6 1943 doi: 10.1063/1.873451
|
[88] |
Mossessian D A et al 2003 Phys. Plasmas 10 689 doi: 10.1063/1.1538252
|
[89] |
Sun P J et al 2019 Phys. Plasmas 26 012304 doi: 10.1063/1.5049209
|
[90] |
Gil L et al 2020 Nucl. Fusion 60 054003 doi: 10.1088/1741-4326/ab7d1b
|
[91] |
Stober J et al 2001 Nucl. Fusion 41 1123 doi: 10.1088/0029-5515/41/9/301
|
[92] |
Saibene G et al 2005 Nucl. Fusion 45 297 doi: 10.1088/0029-5515/45/5/001
|
[93] |
Ozeki T et al 1990 Nucl. Fusion 30 1425 doi: 10.1088/0029-5515/30/8/003
|
[94] |
Kamada Y et al 2000 Plasma Phys. Control. Fusion 42 A247 doi: 10.1088/0741-3335/42/5A/329
|
[95] |
Xu G S et al 2019 Phys. Rev. Lett. 122 255001 doi: 10.1103/PhysRevLett.122.255001
|
[96] |
Yang Q Q et al 2020 Nucl. Fusion 60 076012 doi: 10.1088/1741-4326/ab8e0f
|
[1] | Zhanhong LIN, Feng WANG, Ming XU, Chaofeng SANG, Chen ZHANG, Zhengxiong WANG. Simulation of charge-exchange induced NBI losses on EAST[J]. Plasma Science and Technology, 2024, 26(9): 095103. DOI: 10.1088/2058-6272/ad56ca |
[2] | Yingfeng XU, Debing ZHANG, Jiale CHEN, Fangchuan ZHONG. Simulations of energetic alpha particle loss in the presence of toroidal field ripple in the CFETR tokamak[J]. Plasma Science and Technology, 2022, 24(10): 105101. DOI: 10.1088/2058-6272/ac6fb6 |
[3] | Yingfeng XU (徐颖峰), Youjun HU (胡友俊), Xiaodong ZHANG (张晓东), Xingyuan XU (徐行远), Lei YE (叶磊), Xiaotao XIAO (肖小涛), Zhen ZHENG (郑振). Simulations of NBI fast ion loss in the presence of toroidal field ripple on EAST[J]. Plasma Science and Technology, 2021, 23(9): 95102-095102. DOI: 10.1088/2058-6272/ac0717 |
[4] | Xingyuan XU (徐行远), Yingfeng XU (徐颖峰), Xiaodong ZHANG (张晓东), Youjun HU (胡友俊), Lei YE (叶磊), Xiaotao XIAO (肖小涛). Simulations of first-orbit losses of neutral beam injection (NBI) fast ions on EAST[J]. Plasma Science and Technology, 2020, 22(8): 85101-085101. DOI: 10.1088/2058-6272/ab8973 |
[5] | Kunihiro OGAWA, Mitsutaka ISOBE, Takeo NISHITANI, Sadayoshi MURAKAMI, Ryosuke SEKI, Hideo NUGA, Neng PU, Masaki OSAKABE, LHD Experiment Group. Study of first orbit losses of 1 MeV tritons using the Lorentz orbit code in the LHD[J]. Plasma Science and Technology, 2019, 21(2): 25102-025102. DOI: 10.1088/2058-6272/aaeba8 |
[6] | Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9 |
[7] | Zhen ZHENG (郑振), Nong XIANG (项农), Jiale CHEN (陈佳乐), Siye DING (丁斯晔), Hongfei DU (杜红飞), Guoqiang LI (李国强), Yifeng WANG (王一丰), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Bo LYU (吕波), Qing ZANG (臧庆). Kinetic equilibrium reconstruction for the NBI-and ICRH-heated H-mode plasma on EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65103-065103. DOI: 10.1088/2058-6272/aab262 |
[8] | QU Hongpeng (曲洪鹏). Ion-Banana-Orbit-Width Effect on Bootstrap Current for Small Magnetic Islands[J]. Plasma Science and Technology, 2013, 15(9): 852-856. DOI: 10.1088/1009-0630/15/9/03 |
[9] | WU Guojiang (吴国将), ZHANG Xiaodong (张晓东). Calculations of the Ion Orbit Loss Region at the Edge of EAST[J]. Plasma Science and Technology, 2012, 14(9): 789-793. DOI: 10.1088/1009-0630/14/9/03 |
[10] | LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17 |