Advanced Search+
HU Hui (胡辉), CHEN Weipeng(陈卫鹏), Zhang Jin-li (张锦丽), LU Xi (陆僖), HE Junjia(何俊佳). Influence of plasma temperature on the concentration of NO produced by pulsed arc discharge[J]. Plasma Science and Technology, 2012, 14(3): 257-262. DOI: 10.1088/1009-0630/14/3/13
Citation: HU Hui (胡辉), CHEN Weipeng(陈卫鹏), Zhang Jin-li (张锦丽), LU Xi (陆僖), HE Junjia(何俊佳). Influence of plasma temperature on the concentration of NO produced by pulsed arc discharge[J]. Plasma Science and Technology, 2012, 14(3): 257-262. DOI: 10.1088/1009-0630/14/3/13

Influence of plasma temperature on the concentration of NO produced by pulsed arc discharge

Funds: supported by the National Natural Science Foundation of China (No. 50677026), The Graduates’ Innovation Foundation of Huazhong University of Science and Technology (HF-08-11-2011-261)
More Information
  • Received Date: October 12, 2010
  • This study conducted experiments on producing inhaled medical nitric oxide (iNO) by pulsed arc discharge in dry and clean air under different discharge current. The concentration of NO and NO2 produced by air discharge, as well as the change of the ratio of NO2/NO under different discharge current were investigated. Through the analysis of plasma emission spectrum, the relationship between discharge current and arc plasma temperature was studied. The results indicate that, as discharge current increases, the arc plasma temperature increases, which then leads to the increase of NO concentration, the decrease of NO2 concentration, and the rapid decrease of the ratio of NO2/NO. When the plasma temperature is 9000K, the ratio of NO2/NO is approximately 60%, while when the plasma temperature varies between 10550K and 11300K, the NO2/NO ratio is within the range of 4.2% to 4.6%.
  • Related Articles

    [1]Sunggeun LEE, Hankwon LIM. Landau damping of twisted waves in Cairns distribution with anisotropic temperature[J]. Plasma Science and Technology, 2021, 23(8): 85001-085001. DOI: 10.1088/2058-6272/ac01be
    [2]Jutao YANG (杨巨涛), Jianguo WANG (王建国), Qingliang LI (李清亮), Haiqin CHE (车海琴), Shuji HAO (郝书吉). Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations[J]. Plasma Science and Technology, 2019, 21(7): 75301-075301. DOI: 10.1088/2058-6272/ab0bcd
    [3]Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f
    [4]Imran Ali KHAN, G MURTAZA. Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode[J]. Plasma Science and Technology, 2018, 20(3): 35302-035302. DOI: 10.1088/2058-6272/aaa457
    [5]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [6]REN Yanqiu (仁艳秋), LI Gun (李滚), DUAN Wenshan (段文山). Damping Solitary Wave in a Three-Dimensional Rectangular Geometry Plasma[J]. Plasma Science and Technology, 2016, 18(2): 108-113. DOI: 10.1088/1009-0630/18/2/02
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [9]CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12
    [10]XIU Shixin (修士新), YE Zhaoping (叶兆平), LI Quan (李泉). Influce of Initial Opening Speed on Characteristics of a Drawn Vacuum Arc[J]. Plasma Science and Technology, 2011, 13(3): 376-380.

Catalog

    Article views (595) PDF downloads (1473) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return