Advanced Search+
HU Jing (胡菁), ZHANG Yanwen (张艳文), WANG Xianping (王先平), et al.. Effects of Si 3+ and H + Irradiation on Tungsten Evaluated by Internal Friction Method[J]. Plasma Science and Technology, 2013, 15(10): 1071-1075. DOI: 10.1088/1009-0630/15/10/20
Citation: HU Jing (胡菁), ZHANG Yanwen (张艳文), WANG Xianping (王先平), et al.. Effects of Si 3+ and H + Irradiation on Tungsten Evaluated by Internal Friction Method[J]. Plasma Science and Technology, 2013, 15(10): 1071-1075. DOI: 10.1088/1009-0630/15/10/20

Effects of Si 3+ and H + Irradiation on Tungsten Evaluated by Internal Friction Method

Funds: supported by National Natural Science Foundation of China (Nos.11075177, 11175203, 91126002) and Strategic Priority Research Program of Chinese Academy of Sciences (Nos. KJCX2-YW-N35, XDA03010303) and the National Magnetic Confinement Fusion Program of China (No.2011GB108004) and MOST of China (Nos.2010CB832902, 2010CB832904)
More Information
  • Received Date: April 09, 2012
  • Effects of Si 3+ and H + irradiation on tungsten were investigated by internal friction (IF) technique. Scanning electron microscope (SEM) analysis revealed that sequential dual Si+H irradiation resulted in more serious damage than single Si irradiation. After irradiation, the IF background was significantly enhanced. Besides, two obvious IF peaks were initially found in tem- perature range of 70∼330 K in the sequential Si+H irradiated tungsten sample. The mechanism of increased IF background for the irradiated samples was suggested to originate from the high density dislocations induced by ion irradiation. On the other hand, the relaxation peak P L and non-relaxation peak P H in the Si+H irradiated sample were ascribed to the interaction process of hydrogen atoms with mobile dislocations and transient processes of hydrogen redistribution, respectively. The obtained experimental results verified the high sensitivity of IF method on the irradiation damage behaviors in nuclear materials.
  • Related Articles

    [1]Yufa ZHOU, Jingsen ZHANG, Guangqing XIA, Yue HUA, Yanqin LI, Jixiang HU, Xiuling ZHANG, Lanbo DI. Preparation of N-doped graphite oxide for supercapacitors by NH3 cold plasma[J]. Plasma Science and Technology, 2022, 24(4): 044008. DOI: 10.1088/2058-6272/ac48e0
    [2]Hongyu DAI (戴宏宇), Lee LI (李黎), Shuai REN (任帅), Jingrun GUO (郭景润), Xin GONG (宫鑫), Anthony Bruce MURPHY. Effect of dilution gas composition on the evolution of graphite electrode characteristics in the spark gap switch[J]. Plasma Science and Technology, 2021, 23(6): 64009-064009. DOI: 10.1088/2058-6272/abf126
    [3]Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc
    [4]Hongbei WANG (王宏北), Xiaoqian CUI (崔晓倩), Yuanbo LI (李元博), Mengge ZHAO (赵梦鸽), Shuhua LI (李树华), Guangnan LUO (罗广南), Hongbin DING (丁洪斌). Measurement of the surface morphology of plasma facing components on the EAST tokamak by a laser speckle interferometry approach[J]. Plasma Science and Technology, 2018, 20(3): 35602-035602. DOI: 10.1088/2058-6272/aa9fe6
    [5]Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa
    [6]Nader MORSHEDIAN. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)[J]. Plasma Science and Technology, 2017, 19(9): 95501-095501. DOI: 10.1088/2058-6272/aa74c5
    [7]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [8]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [9]ZHAO Liping(赵利平), WANG Wanjing(王万景), ZHOU Haishan(周海山), WU Jing(吴婧), XIE Chunyi(谢春意), LI Qiang(李强), YANG Zhongshi(杨钟时), LUO Guangnan(罗广南). Deuterium Retention in SiC-Coated Graphite Tiles of EAST[J]. Plasma Science and Technology, 2014, 16(3): 193-196. DOI: 10.1088/1009-0630/16/3/04
    [10]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02

Catalog

    Article views (229) PDF downloads (1281) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return