Advanced Search+
YE Qizheng (叶齐政), YU Dahai (于大海), CAI Huanqing (蔡焕青), SHAO Guiwei (邵瑰玮), et al.. Influence of the Transverse Field Component on the Edge Effect in a Short-Gap Discharge[J]. Plasma Science and Technology, 2013, 15(11): 1112-1115. DOI: 10.1088/1009-0630/15/11/07
Citation: YE Qizheng (叶齐政), YU Dahai (于大海), CAI Huanqing (蔡焕青), SHAO Guiwei (邵瑰玮), et al.. Influence of the Transverse Field Component on the Edge Effect in a Short-Gap Discharge[J]. Plasma Science and Technology, 2013, 15(11): 1112-1115. DOI: 10.1088/1009-0630/15/11/07

Influence of the Transverse Field Component on the Edge Effect in a Short-Gap Discharge

Funds: supported by National Natural Science Foundation of China (No.51177059)
More Information
  • Received Date: March 17, 2012
  • In a general plane-parallel electrode system, the edge of the electrode will undermine the uniformity of the dielectric barrier discharge (DBD) because of the influence of the distorted electrical field. In this paper, the influence of the non-uniform electrical field on the edge effect of DBDs in a short-gap is investigated. We present some of the experimental results of DBDs pro- duced by three kinds of convex-spherical electrodes. The results show that there is a dark area (the homogeneous discharge) in the central region of the electrode and a bright halo (the filamentary discharge) in the outer peripheral region, and the radius of the dark region is determined by the electrode geometry. The calculated results of the transverse (radial) field component distribution on the surface of the electrodes show that the edge effect does not come from the electrode edge, but the transverse field. The discharge has enough space to be fully developed and then format the filamentary discharge in the outer peripheral region because the streamer of the filamentary discharge is driven to move along the direction of the longer path by the transverse field. Thus, the homogeneous discharge (the Townsend DBD or a glow DBD) could not be produced in this area.
  • Related Articles

    [1]Qilin SHI, Hao WU, Zhao YUAN, Zhe TAO, Guixia LI, Wei LUO, Wei JIANG. The influence of weak transverse magnetic field on plasma dissipation process in the post-arc phase in a vacuum interrupter[J]. Plasma Science and Technology, 2022, 24(5): 055501. DOI: 10.1088/2058-6272/ac4fb3
    [2]Lu MA (马璐), Xiaodong WANG (王晓东), Jian ZHU (祝健), Shun KANG (康顺). Effect of DBD plasma excitation characteristics on turbulent separation over a hump model[J]. Plasma Science and Technology, 2018, 20(10): 105503. DOI: 10.1088/2058-6272/aacdf0
    [3]Xianhai PANG (庞先海), Zixi LIU (刘紫熹), Shixin XIU (修士新), Dingyu FENG (冯顶瑜). Arc characteristics during the instability stage on transverse magnetic field contacts[J]. Plasma Science and Technology, 2018, 20(9): 95505-095505. DOI: 10.1088/2058-6272/aac50a
    [4]Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
    [5]Yadong HUANG (黄亚冬), Benmou ZHOU (周本谋). Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator[J]. Plasma Science and Technology, 2018, 20(5): 54021-054021. DOI: 10.1088/2058-6272/aab5bb
    [6]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [7]WANG Cheng (王城), CHEN Tang (陈瑭), LI Wanwan (李皖皖), ZHA Jun (査俊), XIA Weidong (夏维东). Axial Magnetic Field Effects on Xenon Short-Arc Lamps[J]. Plasma Science and Technology, 2014, 16(12): 1096-1099. DOI: 10.1088/1009-0630/16/12/03
    [8]ZHU Liying(朱立颖), WU Jianwen(武建文), JIANG Yuan(蒋原). Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate-Frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459. DOI: 10.1088/1009-0630/16/5/03
    [9]ZHU Liying (朱立颖), WU Jianwen (武建文), LIU Bin (刘斌), FENG Ying (冯英). The Dynamic Volt-Ampere Characteristics of a Vacuum Arc at Intermediate-Frequency Under a Transverse Magnetic Field[J]. Plasma Science and Technology, 2013, 15(1): 30-36. DOI: 10.1088/1009-0630/15/1/06
    [10]LI Hui (李辉), XIE Mingfeng(谢铭丰). Measurement of Plasma Parameters of Gliding Arc Driven by the Transverse Magnetic Field[J]. Plasma Science and Technology, 2012, 14(8): 712-715. DOI: 10.1088/1009-0630/14/8/06

Catalog

    Article views (239) PDF downloads (881) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return