Advanced Search+
ZHU Daoyun (朱道云), ZHENG Changxi (郑昌喜), CHEN Dihu (陈弟虎), HE Zhenhui (何振辉). Plasma-Neutral Gas Structure in a Magnesium Cathodic Arc Operating at Oxygen Gas with Experimental Comparison[J]. Plasma Science and Technology, 2013, 15(11): 1116-1121. DOI: 10.1088/1009-0630/15/11/08
Citation: ZHU Daoyun (朱道云), ZHENG Changxi (郑昌喜), CHEN Dihu (陈弟虎), HE Zhenhui (何振辉). Plasma-Neutral Gas Structure in a Magnesium Cathodic Arc Operating at Oxygen Gas with Experimental Comparison[J]. Plasma Science and Technology, 2013, 15(11): 1116-1121. DOI: 10.1088/1009-0630/15/11/08

Plasma-Neutral Gas Structure in a Magnesium Cathodic Arc Operating at Oxygen Gas with Experimental Comparison

Funds: supported by Hi-Tech Research and Development Program of China (No.2003AA311122)
More Information
  • Received Date: October 31, 2012
  • The plasma-neutral gas structure generated in a magnesium cathodic arc operated with oxygen gas at a constant current of 50 A has been investigated by employing a simplified one-dimensional fluid model. The model includes elastic collisions and charge-exchange reactions between metallic particles and gas molecules, and also generation and recombination of gaseous ions by electron impact. The distribution profiles of density and velocity of species along the axial direction were obtained at different background gas pressures (in the range of 0.7∼3.0 Pa) by this model. A comparison with the experiments was made. At lower gas pressures, the depositing particles were mainly the metallic ions with a larger kinetic energy. As the gas pressure increased, the magnesium atoms with smaller kinetic energy acted as the dominant depositing species. Deter- mined by the minimization of the system’s total energy, MgO(100) or/and MgO(110) orientation appeared easily in the MgO films at lower gas pressures, and at higher gas pressures, the film preferred orientation was MgO(111).
  • Related Articles

    [1]He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e
    [2]Vukoman JOKANOVIC, Bozana COLOVIC, Anka TRAJKOVSKA PETKOSKA, Ana MRAKOVIC, Bojan JOKANOVIC, Milos NENADOVIC, Manuela FERRARA, Ilija NASOV. Optical properties of titanium oxide films obtained by cathodic arc plasma deposition[J]. Plasma Science and Technology, 2017, 19(12): 125504. DOI: 10.1088/2058-6272/aa8806
    [3]Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3
    [4]CHEN Tang (陈瑭), LI Hui (李辉), BAI Bing (白冰), LIAO Mengran (廖梦然), XIA Weidong (夏维东). Parametric Study on Arc Behavior of Magnetically Diffused Arc[J]. Plasma Science and Technology, 2016, 18(1): 6-11. DOI: 10.1088/1009-0630/18/1/02
    [5]YIN Mingli (阴明利), TIAN Canxin (田灿鑫), WANG Zesong (王泽松), FU Dejun (付德君). Influences of Bias Voltage and Target Current on Structure, Microhardness and Friction Coefficient of Multilayered TiAlN/ CrN Coatings Synthesized by Cathodic Arc Plasma Deposition[J]. Plasma Science and Technology, 2013, 15(6): 582-585. DOI: 10.1088/1009-0630/15/6/17
    [6]ZHANG Guoping (张国平), WANG Xingquan (王兴权), LV Guohua (吕国华), et al. Deposition of Ti-Al-N Films by Using a Cathodic Vacuum Arc with Pulsed Bias[J]. Plasma Science and Technology, 2013, 15(6): 542-545. DOI: 10.1088/1009-0630/15/6/10
    [7]YUAN Qianghua (袁强华), YIN Guiqin (殷桂琴), NING Zhaoyuan (宁兆元). Effect of Oxygen Plasma on Low Dielectric Constant HSQ (Hydrogensilsesquioxane) Films[J]. Plasma Science and Technology, 2013, 15(1): 86-88. DOI: 10.1088/1009-0630/15/1/14
    [8]WANG Zhen (王振), WANG Ninghui (王宁会), LI Tie (李铁), CAO Yong (曹勇). 3D Numerical Analysis of the Arc Plasma Behavior in a Submerged DC Electric Arc Furnace for the Production of Fused MgO[J]. Plasma Science and Technology, 2012, 14(4): 321-326. DOI: 10.1088/1009-0630/14/4/10
    [9]LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02
    [10]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05

Catalog

    Article views (208) PDF downloads (1016) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return