Advanced Search+
LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10
Citation: LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10

Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer

Funds: supported by National Natural Science Foundation of China (No.51077062)
More Information
  • Received Date: September 17, 2012
  • A simple negative ion mobility spectrometer (IMS) is designed and used to investi- gate the factors that influence the number and efficiency of electrons generated by the needle-ring pulsed corona discharge electron source. Simulation with Ansoft Maxwell 12 is carried out to analyze the electric field distribution within the IMS, and to offer the basis and foundation for analyzing the measurement results. The measurement results of the quantities of electrons show that when the drift electric field strength and the ring inner diameter rise, both the number of ef- fective electrons and the effective electron rate are increased. When the discharge voltage becomes stronger, the number of effective electrons goes up while the effective electron rate goes down. In light of the simulation results, mechanisms underlying the effects of drift electric field strength, ring inner diameter, and discharge voltage on the effective electron number and effective electron rate are discussed. These will make great sense for designing negative ion mode IMS using the needle-ring pulsed corona discharge as the electron source.
  • Related Articles

    [1]Fuqiong WANG, Xiang GU, Jiankun HUA, Yumin WANG, Xiaokun BO, Bo CHEN, Yuejiang SHI, Shuai XU, Erhui WANG, Yunfeng LIANG, the EHL-2 Team. Divertor heat flux challenge and mitigation in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024009. DOI: 10.1088/2058-6272/adadb8
    [2]Jianqing CAI, Yunfeng LIANG, Alexander KNIEPS, Dongkai QI, Erhui WANG, Haoming XIANG, Liang LIAO, Jie HUANG, Jie YANG, Jia HUANG, Jianwen LIU, Philipp DREWS, Shuai XU, Xiang GU, Yichen GAO, Yu LUO, Zhi LI, the EXL-50 Team. Improved training framework in a neural network model for disruption prediction and its application on EXL-50[J]. Plasma Science and Technology, 2024, 26(5): 055102. DOI: 10.1088/2058-6272/ad1571
    [3]Hui LI (李慧), Yanlin FU (付艳林), Jiquan LI (李继全), Zhengxiong WANG (王正汹). Machine learning of turbulent transport in fusion plasmas with neural network[J]. Plasma Science and Technology, 2021, 23(11): 115102. DOI: 10.1088/2058-6272/ac15ec
    [4]Jiaolong DONG (董蛟龙), Jianchao LI (李建超), Yonghua DING (丁永华), Xiaoqing ZHANG (张晓卿), Nengchao WANG (王能超), Da LI (李达), Wei YAN (严伟), Chengshuo SHEN (沈呈硕), Ying HE (何莹), Xiehang REN (任颉颃). Machine learning application to predict the electron temperature on the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(8): 85101-085101. DOI: 10.1088/2058-6272/ac0685
    [5]Kai ZHANG (张凱), Dalong CHEN (陈大龙), Bihao GUO (郭笔豪), Junjie CHEN (陈俊杰), Bingjia XIAO (肖炳甲). Density limit disruption prediction using a long short-term memory network on EAST[J]. Plasma Science and Technology, 2020, 22(11): 115602. DOI: 10.1088/2058-6272/abb28f
    [6]Baoyue CHAI (柴宝玥), Yingying LI (李颖颖), Ze CHEN (陈泽), Wei TAO (陶巍), Yixuan ZHOU (周艺轩), Shifeng MAO (毛世峰), Zhengping LUO (罗正平), Yi YU (余羿), Bo LYU (吕波), Minyou YE (叶民友). Fast estimation of ion temperature from EAST charge exchange recombination spectroscopy using neural network[J]. Plasma Science and Technology, 2019, 21(10): 105103. DOI: 10.1088/2058-6272/ab2674
    [7]Yonghua DING (丁永华), Zhongyong CHEN (陈忠勇), Zhipeng CHEN (陈志鹏), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Qiming HU (胡启明), Bo RAO (饶波), Jie CHEN (陈杰), Zhifeng CHENG (程芝峰), Li GAO (高丽), Zhonghe JIANG (江中和), Lu WANG (王璐), Zhijiang WANG (王之江), Xiaoqing ZHANG (张晓卿), Wei ZHENG (郑玮), Ming ZHANG (张明), Ge ZHUANG (庄革), Qingquan YU (虞清泉), Yunfeng LIANG (梁云峰), Kexun YU (于克训), Xiwei HU (胡希伟), Yuan PAN (潘垣), Kenneth William GENTLE, the J-TEXT Team. Overview of the J-TEXT progress on RMP and disruption physics[J]. Plasma Science and Technology, 2018, 20(12): 125101. DOI: 10.1088/2058-6272/aadcfd
    [8]WANG Bo (王勃), Robert GRANETZ, XIAO Bingjia (肖炳甲), LI Jiangang (李建刚), YANG Fei (杨飞), LI Junjun (李君君), CHEN Dalong (陈大龙). Establishment and Assessment of Plasma Disruption and Warning Databases from EAST[J]. Plasma Science and Technology, 2016, 18(12): 1162-1168. DOI: 10.1088/1009-0630/18/12/04
    [9]DING Yonghua (丁永华), JIN Xuesong (金雪松), CHEN Zhenzhen (陈真真), ZHUANG Ge (庄革). Neural Network Prediction of Disruptions Caused by Locked Modes on J-TEXT Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1154-1159. DOI: 10.1088/1009-0630/15/11/14
    [10]ZHUANG Huidong (庄会东), ZHANG Xiaodong (张晓东). Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7[J]. Plasma Science and Technology, 2013, 15(8): 745-749. DOI: 10.1088/1009-0630/15/8/05
  • Cited by

    Periodical cited type(6)

    1. Sun, T., Jiang, X., Li, Z. et al. Characterization of fast ion loss in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024002. DOI:10.1088/2058-6272/ad8dfb
    2. Wang, F., Gu, X., Hua, J. et al. Divertor heat flux challenge and mitigation in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024009. DOI:10.1088/2058-6272/adadb8
    3. Shi, Y., Song, X., Guo, D. et al. Strategy and experimental progress of the EXL-50U spherical torus in support of the EHL-2 project. Plasma Science and Technology, 2025, 27(2): 024003. DOI:10.1088/2058-6272/ad9e8f
    4. Li, Z., Sun, T., Liu, B. et al. Evaluation of thermal and beam-thermal p-11B fusion reactions in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024004. DOI:10.1088/2058-6272/ad9da2
    5. Dong, L., Li, L., Liu, W. et al. Instabilities of ideal magnetohydrodynamics mode and neoclassical tearing mode stabilization by electron cyclotron current drive for EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024006. DOI:10.1088/2058-6272/ada421
    6. Gu, X., Yin, G., Shi, Y. et al. Poloidal field system and advanced divertor equilibrium configuration design of the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024011. DOI:10.1088/2058-6272/adae72

    Other cited types(0)

Catalog

    Article views (259) PDF downloads (1295) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return