Advanced Search+
DONG Chunfeng (董春凤), Shigeru MORITA, Motoshi GOTO, WANG Erhui (王二辉), Gen MOTOJIAMA Izumi MURAKAMI, Ryuichi SAKAMOTO, Norimasa YAMAMOTO. Observation of Impurity Accumulation After Hydrogen Multi-Pellet Injection in Large Helical Device[J]. Plasma Science and Technology, 2013, 15(3): 230-234. DOI: 10.1088/1009-0630/15/3/08
Citation: DONG Chunfeng (董春凤), Shigeru MORITA, Motoshi GOTO, WANG Erhui (王二辉), Gen MOTOJIAMA Izumi MURAKAMI, Ryuichi SAKAMOTO, Norimasa YAMAMOTO. Observation of Impurity Accumulation After Hydrogen Multi-Pellet Injection in Large Helical Device[J]. Plasma Science and Technology, 2013, 15(3): 230-234. DOI: 10.1088/1009-0630/15/3/08

Observation of Impurity Accumulation After Hydrogen Multi-Pellet Injection in Large Helical Device

Funds: support by LHD project (NIFS11ULPP010) and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics
More Information
  • Received Date: January 09, 2012
  • Impurity accumulation is studied for neutral beam-heated discharges after hydrogen multi-pellet injection in Large Helical Device (LHD). Iron density profiles are derived from radial profiles of EUV line emissions of FeXV-XXIV with the help of the collisional-radiative model. A peaked density profile of Fe23+ is simulated by using one-dimensional impurity transport code. The result indicates a large inward velocity of -6 m/s at the impurity accumulation phase. However, the discharge is not entirely affected by the impurity accumulation, since the concentration of iron impurity, estimated to be 3.3x10-5 to the electron density, is considerably small. On the other hand, a flat profile is observed for the carbon density of C6+, which is derived from the Zeff profile, indicating a small inward velocity of -1 m/s. These results suggest atomic number dependence in the impurity accumulation of LHD, which is similar to the tokamak result.
  • Related Articles

    [1]J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba
    [2]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [3]Yanqing HUANG (黄艳清), Tianyang XIA (夏天阳), Bin GUI (桂彬). Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes[J]. Plasma Science and Technology, 2018, 20(4): 45101-045101. DOI: 10.1088/2058-6272/aaa4f1
    [4]Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4
    [5]CHEN Longwei (陈龙威), MENG Yuedong (孟月东), ZUO Xiao (左潇), REN Zhaoxing (任兆杏), WU Kenan (吴克难), WANG Shuai (王帅). On the Characteristics of Coaxial-Type Microwave Excited Linear Plasma: a Simple Numerical Analysis[J]. Plasma Science and Technology, 2015, 17(5): 372-383. DOI: 10.1088/1009-0630/17/5/04
    [6]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), CHEN Zhenmao (陈振茂). A Moving Coordinate Numerical Method for Analyses of Electromagneto-Mechanical Coupled Behavior of Structures in a Strong Magnetic Field Aiming at Application to Tokamak Structure[J]. Plasma Science and Technology, 2014, 16(12): 1163-1170. DOI: 10.1088/1009-0630/16/12/14
    [7]HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), XU Yang (徐杨), FENG Changle (冯昌乐). Limit Analysis for the Mechanical Structure of the ITER Neutron Shielding Block[J]. Plasma Science and Technology, 2013, 15(4): 391-396. DOI: 10.1088/1009-0630/15/4/15
    [8]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20
    [9]WANG Songke (王松可), SONG Yuntao (宋云涛), XIE Han (谢韩), LEI Mingzhun (雷明准). Thermal-Structural Coupled Analysis of ITER Torus Cryo-Pump Housing[J]. Plasma Science and Technology, 2012, 14(11): 1011-1016. DOI: 10.1088/1009-0630/14/11/10
    [10]WANG Zhen (王振), WANG Ninghui (王宁会), LI Tie (李铁), CAO Yong (曹勇). 3D Numerical Analysis of the Arc Plasma Behavior in a Submerged DC Electric Arc Furnace for the Production of Fused MgO[J]. Plasma Science and Technology, 2012, 14(4): 321-326. DOI: 10.1088/1009-0630/14/4/10

Catalog

    Article views (248) PDF downloads (1179) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return