Advanced Search+
GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02
Citation: GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02

Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes

Funds: supported by the National Basic Research Program of China (973 Program) (No. 2010GB107003)
More Information
  • Received Date: December 10, 2011
  • Electron cyclotron heating on HL-2A has been simulated by TORAY-GA with a second harmonic extraordinary wave and a fundamental ordinary wave. The results show that the wave absorption of the second harmonic extraordinary wave is better than that of the fundamental ordinary wave. In order to understand the interaction mechanism between electrons and the two dfferent polarization modes, the energy exchange between electrons and the two modes are theoretically analyzed, and it is found that the coupling intensity described by the Bessel function and di®erent polarizations of the two modes are the main reasons leading to the above phenomenon. The theoretical results of this study fit well with the simulated and numerical results.
  • Related Articles

    [1]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Jianyuan XIAO (肖建元), Hong QIN (秦宏), Jian LIU (刘健). Structure-preserving geometric particle-in- cell methods for Vlasov-Maxwell systems[J]. Plasma Science and Technology, 2018, 20(11): 110501. DOI: 10.1088/2058-6272/aac3d1
    [4]Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Jinjun WANG (王进君), Guofeng LI (李国锋). Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis[J]. Plasma Science and Technology, 2018, 20(5): 54019-054019. DOI: 10.1088/2058-6272/aaa195
    [5]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [6]Danijela VUJOŠEVIC, Uroš CVELBAR, Urška REPNIK, Martina MODIC, Saša LAZOVIC, Tina ZAVAŠNIK-BERGANT, Nevena PUAC, Boban MUGOŠA, Evangelos GOGOLIDES, Zoran Lj PETROVIC, Miran MOZETIC. Plasma effects on the bacteria Escherichia coli via two evaluation methods[J]. Plasma Science and Technology, 2017, 19(7): 75504-075504. DOI: 10.1088/2058-6272/aa656b
    [7]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [8]JIANG Lina(姜丽娜), WANG Hongyu(王虹宇), SUN Peng(孙鹏). The Single Particle Theory of Backward-Wave Amplifications Based on Electron Cyclotron Maser with a Rectilinear Beam[J]. Plasma Science and Technology, 2014, 16(1): 12-16. DOI: 10.1088/1009-0630/16/1/03
    [9]KONG Lingbao (孔令宝), WANG Hongyu (王虹宇), HOU Zhiling (侯志灵), JIN Haibo (金海波). The Self-Consistent Nonlinear Theory of Charged Particle Beam Acceleration by Slowed Circularly Polarized Electromagnetic Waves[J]. Plasma Science and Technology, 2013, 15(12): 1174-1177. DOI: 10.1088/1009-0630/15/12/02
    [10]DUAN Yaoyong (段耀勇), GUO Yonghui (郭永辉), QIU Aici (邱爱慈). Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats[J]. Plasma Science and Technology, 2013, 15(8): 727-731. DOI: 10.1088/1009-0630/15/8/02
  • Cited by

    Periodical cited type(14)

    1. Chen, H., Chen, W. On fast-ion transport induced by edge localized modes. Nuclear Fusion, 2025, 65(3): 036028. DOI:10.1088/1741-4326/adb0df
    2. Zhang, L.L., Jhang, H.G., Kang, J.S. et al. M3D-K simulations of beam-driven instabilities in an energetic particle dominant KSTAR discharge. Nuclear Fusion, 2024, 64(7): 076001. DOI:10.1088/1741-4326/ad4535
    3. Zhang, Y.-N., He, K.-Y., Sun, Y.-W. et al. Influence of the far non-resonant components of high-n resonant magnetic perturbations on energetic passing ions loss. Nuclear Fusion, 2024, 64(4): 046012. DOI:10.1088/1741-4326/ad249e
    4. Zocco, A., Mishchenko, A., Könies, A. et al. Nonlinear drift-wave and energetic particle long-time behaviour in stellarators: Solution of the kinetic problem. Journal of Plasma Physics, 2023, 89(3): 905890307. DOI:10.1017/S002237782300048X
    5. Bierwage, A., Shinohara, K., Kazakov, Y.O. et al. Energy-selective confinement of fusion-born alpha particles during internal relaxations in a tokamak plasma. Nature Communications, 2022, 13(1): 3941. DOI:10.1038/s41467-022-31589-6
    6. Rhee, T., Kim, J., Kim, K. et al. Simulation study of fast ion losses associated with the rotating n = 1 resonant magnetic perturbations in KSTAR. Nuclear Fusion, 2022, 62(6): 066028. DOI:10.1088/1741-4326/ac5e28
    7. Zhu, X., Wang, F., Chen, W. et al. Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma. Plasma Science and Technology, 2022, 24(2): 025102. DOI:10.1088/2058-6272/ac41be
    8. Hu, Y., Xu, Y., Hao, B. et al. Effects of resonant magnetic perturbations on neutral beam heating in a tokamak. Physics of Plasmas, 2021, 28(12): 122502. DOI:10.1063/5.0069792
    9. Qiu, Z., Chen, L., Zonca, F. et al. Evidence of 'two plasmon' decay of energetic particle induced geodesic acoustic mode. New Journal of Physics, 2021, 23(6): 063045. DOI:10.1088/1367-2630/ac047a
    10. Sanchis, L., Garcia-Munoz, M., Viezzer, E. et al. Optimizing beam-ion confinement in ITER by adjusting the toroidal phase of the 3D magnetic fields applied for ELM control. Nuclear Fusion, 2021, 61(4): 046006. DOI:10.1088/1741-4326/abdfdd
    11. White, R., Bierwage, A. Particle resonances in toroidal fusion devices. Physics of Plasmas, 2021, 28(3): 032507. DOI:10.1063/5.0040975
    12. Yu, L., Xue, E., Zhang, D. et al. Simulation of the loss of passing fast ions induced by magnetic islands in EAST tokamak plasmas. AIP Advances, 2021, 11(2): 025020. DOI:10.1063/5.0032049
    13. Yang, Y.R., Chen, W., Ye, M.Y. et al. Hybrid simulations of reversed shear Alfven eigenmodes and related nonlinear resonance with fast ions in a tokamak plasma. Nuclear Fusion, 2020, 60(10): 106012. DOI:10.1088/1741-4326/aba673
    14. Heidbrink, W.W., White, R.B. Mechanisms of energetic-particle transport in magnetically confined plasmas. Physics of Plasmas, 2020, 27(3): 030901. DOI:10.1063/1.5136237

    Other cited types(0)

Catalog

    Article views (311) PDF downloads (1612) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return