Advanced Search+
WANG Xiaoping (王小平), ZHANG Xingwang (张兴旺), LEI Lecheng (雷乐成). High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes[J]. Plasma Science and Technology, 2013, 15(6): 528-534. DOI: 10.1088/1009-0630/15/6/08
Citation: WANG Xiaoping (王小平), ZHANG Xingwang (张兴旺), LEI Lecheng (雷乐成). High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes[J]. Plasma Science and Technology, 2013, 15(6): 528-534. DOI: 10.1088/1009-0630/15/6/08

High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes

Funds: supported by National Natural Science Foundation of China (Nos. 20836008 and 21076189)
More Information
  • Received Date: September 25, 2011
  • Although electrohydraulic discharge is effective for wastewater treatment, its appli- cation is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment, water-surface discharge is the preferred choice. However, the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water. As a result, the efficiency of the water treatment might be affected and the service life of the reactor might be shortened. In order to avoid the corrosion problem, nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study. Carbon-felt and wa- ter were used as the high voltage electrode and ground electrode, respectively. A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy e±ciency, and furthermore, the corrosion of metal electrodes was avoided.
  • Related Articles

    [1]Hafiz Imran Ahmad QAZI, Yiying XIN (辛怡颖), Muhammad Ajmal KHAN, Heping LI (李和平), Lu ZHOU (周律), Chengyu BAO (包成玉). Physicochemical properties of the AC-excited helium discharges using a water electrode[J]. Plasma Science and Technology, 2018, 20(7): 75403-075403. DOI: 10.1088/2058-6272/aab4f2
    [2]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [3]Wenzheng LIU (刘文正), Tahan WANG (王踏寒), Xiaozhong CHEN (陈晓中), Chuanlong MA (马传龙). Characteristics and application of diffuse discharge of water electrode in air[J]. Plasma Science and Technology, 2018, 20(1): 14003-014003. DOI: 10.1088/2058-6272/aa8fc5
    [4]Lele WANG (王乐乐), XiutaoHUANG (黄修涛), Junfeng CHEN (陈俊峰), Shengming WANG (王圣明), Zhaoyang HU (胡朝阳), Minghai LIU (刘明海). Simulated and experimental studies on the array dielectric barrier discharge of water electrodes[J]. Plasma Science and Technology, 2017, 19(3): 35402-035402. DOI: 10.1088/2058-6272/19/3/035402
    [5]WANG Zhaojun(王兆均), JIANG Song(姜松), LIU Kefu(刘克富). Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma[J]. Plasma Science and Technology, 2014, 16(7): 688-694. DOI: 10.1088/1009-0630/16/7/10
    [6]WANG Xiaoping(王小平), LI Zhongjian(李中坚), ZHANG Xingwang(张兴旺), LEI Lecheng(雷乐成). Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment[J]. Plasma Science and Technology, 2014, 16(5): 479-485. DOI: 10.1088/1009-0630/16/5/07
    [7]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [8]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [9]LI Wenqin (李文琴 ), WEN Xiaoqiong ( 温小琼 ), ZHANG Jialiang (张家良). Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface[J]. Plasma Science and Technology, 2013, 15(10): 1020-1024. DOI: 10.1088/1009-0630/15/10/11
    [10]WENG Ming (翁明), XU Weijun (徐伟军). The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube[J]. Plasma Science and Technology, 2012, 14(11): 1024-1029. DOI: 10.1088/1009-0630/14/11/12

Catalog

    Article views (216) PDF downloads (982) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return