Advanced Search+
YIN Mingli (阴明利), TIAN Canxin (田灿鑫), WANG Zesong (王泽松), FU Dejun (付德君). Influences of Bias Voltage and Target Current on Structure, Microhardness and Friction Coefficient of Multilayered TiAlN/ CrN Coatings Synthesized by Cathodic Arc Plasma Deposition[J]. Plasma Science and Technology, 2013, 15(6): 582-585. DOI: 10.1088/1009-0630/15/6/17
Citation: YIN Mingli (阴明利), TIAN Canxin (田灿鑫), WANG Zesong (王泽松), FU Dejun (付德君). Influences of Bias Voltage and Target Current on Structure, Microhardness and Friction Coefficient of Multilayered TiAlN/ CrN Coatings Synthesized by Cathodic Arc Plasma Deposition[J]. Plasma Science and Technology, 2013, 15(6): 582-585. DOI: 10.1088/1009-0630/15/6/17

Influences of Bias Voltage and Target Current on Structure, Microhardness and Friction Coefficient of Multilayered TiAlN/ CrN Coatings Synthesized by Cathodic Arc Plasma Deposition

Funds: supported by the Ministry of Industry and Information Technology of China (No. 2009ZX04012-32) and the International Cooperation Program of Ministry of Science and Technology of China (No. 2011DFR50580)
More Information
  • Multilayered TiAlN/CrN coatings have been synthesized on stainless steel substrates by cathodic arc plasma deposition using TiAl and Cr targets. Influences of the bias voltage, cath- ode current ratio ITiAl/ICr, and deposition pressure on the hardness and friction coe±cient of the coatings were investigated. The measurement revealed existence of two cubic phases, face-center- cubic (Cr, Al)N and (Ti, Al)N, in the coatings deposited under various bias voltages except for the coating deposited at -400 V, which is amorphous. The hardness of the coatings was strongly dependent on the ITiAl/ICr ratio and deposition pressure, and reached a maximum of 33 GPa at an ITiAl/ICr ratio of 1.0 and a pressure of 1.0 Pa. The incorporation of the element chromium can reduce the density of pinholes in the coatings and assist the optimization of deposition conditions for high quality TiAlN/CrN coatings.
  • Related Articles

    [1]Jung-Hwan IN, Youngmin MOON, Jang-Hee CHOI, Sungho JEONG. Consistency of intensity ratio between spectral lines with similar self-absorption characteristics during ungated laser induced breakdown spectroscopy measurements[J]. Plasma Science and Technology, 2019, 21(3): 34010-034010. DOI: 10.1088/2058-6272/aaed60
    [2]Teng FEI (费腾), Congyuan PAN (潘从元), Qiang ZENG (曾强), Qiuping WANG (王秋平), Xuewei DU (杜学维). Relative spectral response calibration using Ti plasma lines[J]. Plasma Science and Technology, 2018, 20(4): 45503-045503. DOI: 10.1088/2058-6272/aaaada
    [3]Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce
    [4]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [5]TANG Enling (唐恩凌), ZHANG Lijiao (张立佼), ZHANG Qingming (张庆明), SHI Xiaohan (施晓涵), WANG Meng (王猛), WANG Di (王迪), XIANG Shenghai (相升海), XIA Jin (夏瑾), HAN Yafei (韩雅菲), XU Mingyang (徐名扬), WU Jin (吴尽), ZHANG Shuang (张爽), YUAN Jianfei (袁健飞). Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate[J]. Plasma Science and Technology, 2015, 17(7): 529-533. DOI: 10.1088/1009-0630/17/7/01
    [6]WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
    [7]ZHOU Hangyu(周航宇), CUI Zhengying(崔正英), MORITA Shigeru(森田繁), FU Bingzhong(傅炳忠), GOTO Motoshi(後藤基志), SUN Ping(孙平), FENG Beibin(冯北滨), CUI Xuewu(崔学武), LU Ping(卢平), YANG Qingwei(杨青巍), DUAN Xuru(段旭如). Spectral Analysis in EUV Range for Study of Core Impurity Behavior in HL-2A[J]. Plasma Science and Technology, 2014, 16(2): 89-92. DOI: 10.1088/1009-0630/16/2/01
    [8]HAO Xiping (郝希平), SONG Zhiqiang (宋志), HE Jian (贺健), LI Qiuze (李秋泽), et al.. Calculation of the Effect of Opacity on the Solar Spectral Lines of CIV[J]. Plasma Science and Technology, 2013, 15(8): 760-763. DOI: 10.1088/1009-0630/15/8/08
    [9]GUO Jun(郭俊). The Effects of Relative Drift Velocities Between Proton and He2+ on the Magnetic Spectral Signatures in the Plasma Depletion Layer[J]. Plasma Science and Technology, 2011, 13(5): 557-560.
    [10]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.

Catalog

    Article views (275) PDF downloads (1197) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return