Advanced Search+
S. D. KIM, D. I. JANG, B. J. LIM, S. B. LEE, Y. S. MOK. Degradation of Synthetic Dyeing Wastewater by Underwater Electrical Discharge Processes[J]. Plasma Science and Technology, 2013, 15(7): 659-662. DOI: 10.1088/1009-0630/15/7/11
Citation: S. D. KIM, D. I. JANG, B. J. LIM, S. B. LEE, Y. S. MOK. Degradation of Synthetic Dyeing Wastewater by Underwater Electrical Discharge Processes[J]. Plasma Science and Technology, 2013, 15(7): 659-662. DOI: 10.1088/1009-0630/15/7/11

Degradation of Synthetic Dyeing Wastewater by Underwater Electrical Discharge Processes

  • Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reactive Blue 4 (RB4) and Acid Red 4 (AR4) were used as model contaminants for the synthetic wastewater. The performance of the aforementioned systems was compared with respect to the chromaticity removal and the energy requirement. The results showed that the present electrical discharge systems were very effective for degradation of the dyes. The dependences of the dye degradation rate on treatment time, initial dye concentration, electrical energy, and the type of working gas including air, O2, and N2 were examined. The change in the initial dye concentration did not largely affect the degradation of either RB4 or AR4. The energy delivered to the UPED system was only partially utilized for generating reactive species capable of degrading the dyes, leading to higher energy requirement than the UDBD system. Among the working gases, the best performance was observed with O2 . As the degradation proceeded, the concentration of total dissolved solids and the solution conductivity kept increasing while pH showed a decreasing trend, revealing that the dyes were effectively mineralized.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return