Advanced Search+
ZHUANG Huidong (庄会东), ZHANG Xiaodong (张晓东). Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7[J]. Plasma Science and Technology, 2013, 15(8): 745-749. DOI: 10.1088/1009-0630/15/8/05
Citation: ZHUANG Huidong (庄会东), ZHANG Xiaodong (张晓东). Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7[J]. Plasma Science and Technology, 2013, 15(8): 745-749. DOI: 10.1088/1009-0630/15/8/05

Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7

Funds: supported by National Natural Science Foundation of China (No.085JM66502)
More Information
  • Received Date: March 29, 2012
  • In large tokamaks, disruption of high current plasma would damage plasma facing component surfaces (PFCs) or other inner components due to high heat load, electromagnetic force load and runaway electrons. It would also influence the subsequent plasma discharge due to production of impurities during disruptions. So the avoidance and mitigation of disruptions is essential for the next generation of tokamaks, such as ITER. Massive gas injection (MGI) is a promising method of disruption mitigation. A new fast valve has been developed successfully on EAST. The valve can be opened in 0.5 ms, and the duration of open state is largely dependent on the gas pressure and capacitor voltage. The throughput of the valve can be adjusted from 0 mbar·L to 700 mbar·L by changing the capacitor voltage and gas pressure. The response time and throughput of the fast valve can meet the requirement of disruption mitigation on EAST. In the last round campaign of EAST and HT-7 in 2010, the fast valve has operated successfully. He and Ar was used for the disruption mitigation on HT-7. By injecting the proper amount of gas, the current quench rate could be slowed down, and the impurities radiation would be greatly improved. In elongated plasmas of EAST discharges, the experimental data is opposite to that which is expected.
  • Related Articles

    [1]Dawei GUO (郭大伟), Mousen CHENG (程谋森), Xiaokang LI (李小康), Bixuan CHE (车碧轩), Xiong YANG (杨雄), Moge WANG (王墨戈). Measurement of transient neutral gas puff pressure in the NUDT_IPPTx by a fast ionization gauge[J]. Plasma Science and Technology, 2018, 20(12): 125506. DOI: 10.1088/2058-6272/aade84
    [2]LIU Yukai (刘煜锴), GAO Li (高丽), LIU Haiqing (刘海庆), YANG Yao (杨曜), GAO Xiang (高翔), J-TEXT Team. Fast Data Processing of a Polarimeter-Interferometer System on J-TEXT[J]. Plasma Science and Technology, 2016, 18(12): 1143-1147. DOI: 10.1088/1009-0630/18/12/01
    [3]HUANG Haihong(黄海宏), YIN Ming(殷明), WANG Haixin(王海欣). Design of Controller for New EAST Fast Control Power Supply[J]. Plasma Science and Technology, 2014, 16(11): 1068-1073. DOI: 10.1088/1009-0630/16/11/13
    [4]YAN Rong(鄢容), CHEN Junling(陈俊凌), CHEN Longwei(陈龙威), ZHU Dahuan(朱大焕). Deposition Mitigation of the First Mirrors Exposed in EAST with Metal and Carbon Mixed Wall Materials[J]. Plasma Science and Technology, 2014, 16(9): 885-889. DOI: 10.1088/1009-0630/16/9/14
    [5]HUANG Haihong(黄海宏), YAN Teng(晏腾), WANG Haixin(王海欣). Application of a Current and Voltage Mixed Control Mode for the New Fast Control Power Supply at EAST[J]. Plasma Science and Technology, 2014, 16(4): 420-423. DOI: 10.1088/1009-0630/16/4/22
    [6]LIU Hui (刘辉), TANG Ke (唐柯), GAO Ge (高格), FU Peng (傅鹏), et al.. Study of the EAST Fast Control Power Supply Based on Carrier Phase-Shift PWM[J]. Plasma Science and Technology, 2013, 15(9): 950-954. DOI: 10.1088/1009-0630/15/9/22
    [7]ZANG Linge (臧临阁), M. TAKEUCHI, N. NISHINO, T. MIZUUCHI, S. OHSHIMA, K. KASAJIMA, M. SHA, K. MUKAI, et al. Observation of Edge Plasma Fluctuations with a Fast Camera in Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 213-216. DOI: 10.1088/1009-0630/15/3/04
    [8]LI Jiajia, HU Zhanghu, SONG Yuanhong, WANG Younian. Effects of Fast-Ion Injection on a Magnetized Sheath near a Floating Wall[J]. Plasma Science and Technology, 2013, 15(1): 1-6. DOI: 10.1088/1009-0630/15/1/01
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]GUO Yong (郭勇), XIAO Bingjia (肖炳甲), LUO Zhengping (罗正平). Toroidal Multipolar Expansion for Fast L-Mode Plasma Boundary Reconstruction in EAST[J]. Plasma Science and Technology, 2011, 13(3): 332-341.

Catalog

    Article views (340) PDF downloads (1191) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return