Advanced Search+
CHENG Xian (程显), DUAN Xiongying (段雄英), LIAO Minfu (廖敏夫), et al.. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption[J]. Plasma Science and Technology, 2013, 15(8): 800-806. DOI: 10.1088/1009-0630/15/8/16
Citation: CHENG Xian (程显), DUAN Xiongying (段雄英), LIAO Minfu (廖敏夫), et al.. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption[J]. Plasma Science and Technology, 2013, 15(8): 800-806. DOI: 10.1088/1009-0630/15/8/16

The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption

Funds: supported in part by National Natural Science Foundation of China (No.50977004), Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period. Research of China (2009BAA19B03, 2009BAA19B05), Fok Ying Tung Education Foundation (No.131057) and New Century Excellent Talents in University of China (No.NCET-10-0282)
More Information
  • Received Date: January 13, 2012
  • Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF 6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF 6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF 6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero.
  • Related Articles

    [1]Xian CHENG (程显), Peiyuan YANG (杨培远), Guowei GE (葛国伟), Qiliang WU (吴启亮), Wei XIE (谢伟). Dynamic dielectric recovery performance of serial vacuum and SF6 gaps in HVDC interruption and its regulation method[J]. Plasma Science and Technology, 2019, 21(7): 74010-074010. DOI: 10.1088/2058-6272/ab1720
    [2]Yi CHEN (陈毅), Fei YANG (杨飞), Hao SUN (孙昊), Yi WU (吴翊), Chunping NIU (纽春萍), Mingzhe RONG (荣命哲). Influence of the axial magnetic field on sheath development after current zero in a vacuum circuit breaker[J]. Plasma Science and Technology, 2017, 19(6): 64003-064003. DOI: 10.1088/2058-6272/aa65c8
    [3]ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11
    [4]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 490-493. DOI: 10.1088/1009-0630/18/5/08
    [5]WU Yifei (吴益飞), REN Zhigang (任志刚), FENG Ying (冯英), LI Mei (李美), ZHANG Hantian (张含天). Analysis of Fault Arc in High-Speed Switch Applied in Hybrid Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 299-304. DOI: 10.1088/1009-0630/18/3/14
    [6]ZHANG Junmin (张俊民 ), CHI Chengbin (迟程缤), GUAN Yonggang (关永刚), LIU Weidong (刘卫东), WU Junhui (吴军辉). Simulation of Arc Rotation and Its Effects on Pressure of Expansion Volume in an Auto-Expansion SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 287-291. DOI: 10.1088/1009-0630/18/3/12
    [7]NIU Chunping (纽春萍), DING Juwen (丁炬文), WU Yi (吴翊), YANG Fei (杨飞), DONG Delong (董得龙), FAN Xingyu (范星宇), RONG Mingzhe (荣命哲). Simulation and Experimental Analysis of Arc Motion Characteristics in Air Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 241-246. DOI: 10.1088/1009-0630/18/3/05
    [8]LIN Xin (林莘), WANG Feiming (王飞鸣), XU Jianyuan (徐建源), XIA Yalong (夏亚龙), LIU Weidong (刘卫东). Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 223-229. DOI: 10.1088/1009-0630/18/3/02
    [9]ZHA Fengwei(查烽炜), SONG Zhiquan(宋执权), FU Peng(傅鹏), DONG Lin(董琳), WANG Min(王敏). Research on Reverse Recovery Transient of Parallel Thyristors for Fusion Power Supply[J]. Plasma Science and Technology, 2014, 16(7): 716-720. DOI: 10.1088/1009-0630/16/7/15
    [10]YANG Fei(杨飞), MA Ruiguang ( 马瑞光), WU Yi( 吴翊), SUN Hao( 孙昊), NIU Chunping( 纽春萍), RONG Mingzhe(荣命哲). Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. DOI: 10.1088/1009-0630/14/2/16

Catalog

    Article views (246) PDF downloads (2076) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return