Advanced Search+
XIAO Jinshui(肖金水), YANG Zhoujun(杨州军), ZHUANG Ge(庄革), HU Qiming(胡启明), FENG Xiande(冯先德), LIU Minghai(刘明海). Plasma Response to Supersonic Molecular Beam Injection in J-TEXT[J]. Plasma Science and Technology, 2014, 16(1): 17-20. DOI: 10.1088/1009-0630/16/1/04
Citation: XIAO Jinshui(肖金水), YANG Zhoujun(杨州军), ZHUANG Ge(庄革), HU Qiming(胡启明), FENG Xiande(冯先德), LIU Minghai(刘明海). Plasma Response to Supersonic Molecular Beam Injection in J-TEXT[J]. Plasma Science and Technology, 2014, 16(1): 17-20. DOI: 10.1088/1009-0630/16/1/04

Plasma Response to Supersonic Molecular Beam Injection in J-TEXT

Funds: supported by National Natural Science Foundation of China (Nos.11005043 and 11205053) and the National Magnetic Confinement Fusion Program of China (No.2013GB106001)
More Information
  • Received Date: August 21, 2013
  • Recently, hydrogen fueling experiments with supersonic molecular beam injection (SMBI) system have been performed in the J-TEXT tokamak. To evaluate the effects of the in- jection amount of SMBI on plasma behaviors, moderate and intensive SMBs have been separately injected and compared with each other in Ohmic discharges. With moderate SMBs, electron den- sity increases about twice as before, the size of magnetic island slightly decreases, and the edge toroidal rotation speed in a counter-current direction, measured by a high resolution spectrometer (Carbon V ion, 227.09 nm, r/a= 0.7-0.8), is accelerated from 8 km/s to 12 km/s. The state of higher electron density with moderate SMBI can be maintained for a long period, which indicates that plasma confinement is improved. However, with intensive SMBs, the accompanied magne- tohydrodynamic (MHD) activities are triggered, and the electron density increases moderately. The edge toroidal velocity is decreased, in certain cases even reversed in the co-current direction. The statistical result of experimental data for moderate and intensive SMBs suggests a preferred fueling amount (less than 3.2×10 19 ) to improve the SMBI fueling efficiency in experiments.
  • 1 Yao L H, Tang N Y, Cui Z Y, et al. 1998, Nuclear Fusion, 38: 631;
    2 Yao L H, Zhou Y, Cao J Y, et al. 2001, Nuclear Fusion,41: 817;
    3 Yao L H, Dong J F, Zhou Y, et al. 2004, Nuclear Fu-sion, 44: 420;
    4 Yao L H, Feng B B, Chen C Y, et al. 2007, Nuclear Fusion, 47: 1399;
    5 Yu D L, Chen C Y, Yao L H, et al. 2010, Nuclear Fusion, 50: 035009;
    6 Yu D L, Chen C Y, Yao L H, et al. 2012, Nuclear Fusion, 52: 082001;
    7 Pegourie B, Tsitrone E, Dejarnac R, et al. 2003, Jour-nal of Nuclear Material, 313-316: 539;
    8 Kim J, Jeon Y M, Xiao W W, et al. 2012, Nuclear Fusion, 52: 114011;
    9 Xiao J S, Yang Z J, Zhuang G, et al. IEEE Transac-tions on Plasma Science (accepted) ;
    10 Zhuang G, Pan Y, Hu X W, et al. 2011, Nuclear Fu-sion, 51: 094020;
    11 Cheng Z F, Luo J, Wang Z J, et al. 2013, Review of Scientiˉc Instruments, 84: 07350812
  • Related Articles

    [1]Rongjing DENG, Tingfeng MING, Bang LI, Qiqi SHI, Shanwei HOU, Shuqi YANG, Xiaoju LIU, Shaocheng LIU, Guoqiang LI, Xiang GAO, Yasuhiro SUZUKI, Yunfeng LIANG. VUV imaging of type-I ELM filamentary structures and their temporal characteristics on EAST[J]. Plasma Science and Technology, 2024, 26(11): 114002. DOI: 10.1088/2058-6272/ad621c
    [2]Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5
    [3]Dianlin ZHENG (郑典麟), Kai ZHANG (张凯), Zhengying CUI (崔正英), Ping SUN (孙平), Chunfeng DONG (董春凤), Ping LU (卢平), Bingzhong FU (傅炳忠), Zetian LIU (刘泽田), Zhongbing SHI (石中兵), Qingwei YANG (杨青巍). High-speed VUV spectroscopy for edge impurity line emission measurements in HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105103. DOI: 10.1088/2058-6272/aacf3d
    [4]Nan ZHAO (赵楠), Ning YAN (颜宁), Guosheng XU (徐国盛), Zhengxiong WANG (王正汹), Ran CHEN (陈冉), Huiqian WANG (汪惠乾), Liang WANG (王亮), Siye DING (丁斯晔), Linming SHAO (邵林明), Liang CHEN (陈良), Guanghai HU (胡广海), Wei ZHANG (张炜). The observation of small ELM post-cursor mode in EAST[J]. Plasma Science and Technology, 2018, 20(2): 24007-024007. DOI: 10.1088/2058-6272/aa9bd8
    [5]WU Yifei (吴益飞), REN Zhigang (任志刚), FENG Ying (冯英), LI Mei (李美), ZHANG Hantian (张含天). Analysis of Fault Arc in High-Speed Switch Applied in Hybrid Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 299-304. DOI: 10.1088/1009-0630/18/3/14
    [6]WANG Lei(王磊), HUANG Yiyun(黄懿赟), ZHAO Yanping(赵燕平), ZHANG Jian(张健), YANG Lei(杨磊), GUO Wenjun(郭文军). Structure Design and Analysis of High-Voltage Power Supply for ECRH[J]. Plasma Science and Technology, 2014, 16(11): 1079-1082. DOI: 10.1088/1009-0630/16/11/15
    [7]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), JI Xiang(戢翔), E. DALY, M. KALISH, LU Su(卢速), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可). Design of Tokamak ELM Coil Support in High Nuclear Heat Environment[J]. Plasma Science and Technology, 2014, 16(3): 300-304. DOI: 10.1088/1009-0630/16/3/23
    [8]MING Tingfeng (明廷凤), Satoshi OHDACHI, Yasuhiro SUZUKI, LHD Experiment Group. Estimate of the Deposition Profile of Carbon Pellets Using a High-Speed VUV Imaging System in the LHD[J]. Plasma Science and Technology, 2013, 15(12): 1178-1184. DOI: 10.1088/1009-0630/15/12/03
    [9]CAO Hongrui (曹宏睿), LI Shiping (李世平), XU Xiufeng (徐修峰), Yuan Guoliang (袁国梁), YANG Qingwei(杨青巍), YIN Zejie (阴泽杰). A High-Speed Baseline Restorer for Neutron Flux Detection in ITER[J]. Plasma Science and Technology, 2012, 14(11): 1008-1010. DOI: 10.1088/1009-0630/14/11/09
    [10]Yu Beibei (于蓓蓓), Zhu Lihua (竺礼华), He Chuangye (贺创业), Wu Xiaoguang (吴晓光), Zheng Yun (郑云), Li Guangsheng (李广生), Wang Lielin (王烈林), Yao Shunhe (姚顺和), Zhang Biao (张彪), Xu Chuan (徐川), Hao Xin, et al. High Spin Structure in 106Pd[J]. Plasma Science and Technology, 2012, 14(6): 531-533. DOI: 10.1088/1009-0630/14/6/22

Catalog

    Article views (479) PDF downloads (1529) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return