Advanced Search+
XIAO Jinshui(肖金水), YANG Zhoujun(杨州军), ZHUANG Ge(庄革), HU Qiming(胡启明), FENG Xiande(冯先德), LIU Minghai(刘明海). Plasma Response to Supersonic Molecular Beam Injection in J-TEXT[J]. Plasma Science and Technology, 2014, 16(1): 17-20. DOI: 10.1088/1009-0630/16/1/04
Citation: XIAO Jinshui(肖金水), YANG Zhoujun(杨州军), ZHUANG Ge(庄革), HU Qiming(胡启明), FENG Xiande(冯先德), LIU Minghai(刘明海). Plasma Response to Supersonic Molecular Beam Injection in J-TEXT[J]. Plasma Science and Technology, 2014, 16(1): 17-20. DOI: 10.1088/1009-0630/16/1/04

Plasma Response to Supersonic Molecular Beam Injection in J-TEXT

  • Recently, hydrogen fueling experiments with supersonic molecular beam injection (SMBI) system have been performed in the J-TEXT tokamak. To evaluate the effects of the in- jection amount of SMBI on plasma behaviors, moderate and intensive SMBs have been separately injected and compared with each other in Ohmic discharges. With moderate SMBs, electron den- sity increases about twice as before, the size of magnetic island slightly decreases, and the edge toroidal rotation speed in a counter-current direction, measured by a high resolution spectrometer (Carbon V ion, 227.09 nm, r/a= 0.7-0.8), is accelerated from 8 km/s to 12 km/s. The state of higher electron density with moderate SMBI can be maintained for a long period, which indicates that plasma confinement is improved. However, with intensive SMBs, the accompanied magne- tohydrodynamic (MHD) activities are triggered, and the electron density increases moderately. The edge toroidal velocity is decreased, in certain cases even reversed in the co-current direction. The statistical result of experimental data for moderate and intensive SMBs suggests a preferred fueling amount (less than 3.2×10 19 ) to improve the SMBI fueling efficiency in experiments.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return