Citation: | XIAO Jinshui(肖金水), YANG Zhoujun(杨州军), ZHUANG Ge(庄革), HU Qiming(胡启明), FENG Xiande(冯先德), LIU Minghai(刘明海). Plasma Response to Supersonic Molecular Beam Injection in J-TEXT[J]. Plasma Science and Technology, 2014, 16(1): 17-20. DOI: 10.1088/1009-0630/16/1/04 |
1 Yao L H, Tang N Y, Cui Z Y, et al. 1998, Nuclear Fusion, 38: 631;
|
2 Yao L H, Zhou Y, Cao J Y, et al. 2001, Nuclear Fusion,41: 817;
|
3 Yao L H, Dong J F, Zhou Y, et al. 2004, Nuclear Fu-sion, 44: 420;
|
4 Yao L H, Feng B B, Chen C Y, et al. 2007, Nuclear Fusion, 47: 1399;
|
5 Yu D L, Chen C Y, Yao L H, et al. 2010, Nuclear Fusion, 50: 035009;
|
6 Yu D L, Chen C Y, Yao L H, et al. 2012, Nuclear Fusion, 52: 082001;
|
7 Pegourie B, Tsitrone E, Dejarnac R, et al. 2003, Jour-nal of Nuclear Material, 313-316: 539;
|
8 Kim J, Jeon Y M, Xiao W W, et al. 2012, Nuclear Fusion, 52: 114011;
|
9 Xiao J S, Yang Z J, Zhuang G, et al. IEEE Transac-tions on Plasma Science (accepted) ;
|
10 Zhuang G, Pan Y, Hu X W, et al. 2011, Nuclear Fu-sion, 51: 094020;
|
11 Cheng Z F, Luo J, Wang Z J, et al. 2013, Review of Scientiˉc Instruments, 84: 07350812
|
1. | Zhang, B., Ping, T., Mu, L. et al. Highly selective conversion of alkali lignin into aromatic monomers by pulse dielectric barrier discharge plasma at mild reaction conditions. Sustainable Materials and Technologies, 2023. DOI:10.1016/j.susmat.2023.e00643 | |
2. | Liu, Z.-B., Wang, X.-C., Zhang, Y.-T. Numerical Study on Kinetic Effects of Driving Frequency in Atmospheric Radio Frequency Discharges Using Deep Neural Network. IEEE Transactions on Plasma Science, 2023, 51(5): 1212-1222. DOI:10.1109/TPS.2023.3267733 | |
3. | Ai, F., Liu, Z.-B., Zhang, Y.-T. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning | [结合机器学习的大气压介质阻挡放电数值模拟研究]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(24): 245201. DOI:10.7498/aps.71.20221555 | |
4. | Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Comparing Study on Formation of Large Discharge Currents in Atmospheric Pulse-Modulated Radio Frequency Discharges. IEEE Transactions on Plasma Science, 2022, 50(9): 2796-2804. DOI:10.1109/TPS.2022.3188019 | |
5. | Wang, X., Gao, S., Zhang, Y. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium-oxygen admixtures. Plasma Science and Technology, 2022, 24(8): 085401. DOI:10.1088/2058-6272/ac67bf | |
6. | Gao, S.-H., Cheng, R.-G., Zhang, Y.-T. Numerical Study on Operation Optimization of Atmospheric Radio-Frequency Glow Discharges Modulated by Pulses. IEEE Transactions on Plasma Science, 2022, 50(3): 609-618. DOI:10.1109/TPS.2022.3147853 | |
7. | Gao, S.-H., Wang, X.-L., Zhang, Y.-T. Modeling study on the enhancement of atmospheric pulse-modulated radio-frequency discharge assisted by pulsed voltage. Physics of Plasmas, 2021, 28(11): 0061546. DOI:10.1063/5.0061546 | |
8. | ZHAO, P., CHANG, C., SHU, P. et al. Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air. Plasma Science and Technology, 2021, 23(8): 085003. DOI:10.1088/2058-6272/ac0688 | |
9. | Wang, X.-L., Gao, S.-H., Zhang, Y.-T. Numerical study on optimization of atmospheric pulse-modulated radio frequency discharges in the very high frequency range. Physics of Plasmas, 2021, 28(7): 073511. DOI:10.1063/5.0048966 | |
10. | Shen, J., Cheng, C., Xu, Z. et al. Principles and Characteristics of Cold Plasma at Gas Phase and Gas-Liquid Phase. Applications of Cold Plasma in Food Safety, 2021. DOI:10.1007/978-981-16-1827-7_1 | |
11. | Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers | [脉冲调制条件下介质阻挡特高频放电特性的数值模拟]. Wuli Xuebao/Acta Physica Sinica, 2020, 69(11): 115204. DOI:10.7498/aps.69.20191853 |