Advanced Search+
WU Maoshui(吴茂水), XU Yu(徐雨), DAI Linjun(戴林君), WANG Tiantian(王恬恬), LI Xue(李雪), WANG Dexin(王德信), GUO Ying(郭颖), DING Ke(丁可), HUANG Xiaojiang(黄晓江), SHI Jianjun(石建军), ZHANG Jing(张菁). The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(1): 32-36. DOI: 10.1088/1009-0630/16/1/07
Citation: WU Maoshui(吴茂水), XU Yu(徐雨), DAI Linjun(戴林君), WANG Tiantian(王恬恬), LI Xue(李雪), WANG Dexin(王德信), GUO Ying(郭颖), DING Ke(丁可), HUANG Xiaojiang(黄晓江), SHI Jianjun(石建军), ZHANG Jing(张菁). The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(1): 32-36. DOI: 10.1088/1009-0630/16/1/07

The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition

Funds: supported by National Natural Science Foundation of China (Nos.10835004, 10775031 and 11375042), Shanghai Municipal Com- mittee of Science and Technology of China (10XD1400100), Outstanding Young Investigator Award (No.11005017)
More Information
  • Received Date: August 29, 2013
  • The gas phase nucleation process of anatase TiO 2 in atmospheric non-thermal plasma enhanced chemical vapor deposition is studied. The particles synthesized in the plasma gas phase at different power density were collected outside of the reactor. The structure of the collected particles has been investigated by field scanning electron microscope (FESEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The analysis shows that uniform crystalline nuclei with average size of several nanometers have been formed in the scale of micro second through this reactive atmo- spheric plasma gas process. The crystallinity of the nanoparticles increases with power density. The high density of crystalline nanonuclei in the plasma gas phase and the low gas temperature are beneficial to the fast deposition of the 3D porous anatase TiO 2 film.
  • 1 Pfaff G, Reynders P. 1999, Chemical Reviews, 99: 1963;
    2 Salvador A, Pascual-Martí M C, Adell J R, et al. 2000,Journal of Pharmaceutical and Biomedical Analysis,22: 301;
    3 Zallen R, Moret M P. 2006, Solid State Communica-tions, 137: 154;
    4 Yuan Shuai, Chen Wanhua, Hu Shengshui. 2005, Ma-terials Science and Engineering C, 25: 479;
    5 Fujishima A, Honda K. 1972, Nature, 238: 37;
    6 Minabe T, Tryk D A, Fujishima A. 2000, Journal of Photochemistry and Photobiology A: Chemistry, 137:53;
    7 Tryk D A, Fujishima A, Honda K. 2000, Electrochim-ica Acta, 45: 2363;
    8 Moon J, Park J A, Lee S J, et al. 2010, Sensors and Actuators B: Chemical, 149: 301;
    9 Nie X, Leyland A, Matthews A. 2000, Surface and Coatings Technology, 125: 407 10 O'Regan B, Gratzel M. 1991, Nature, 353: 73735;
    Plasma Science and Technology, Vol.16, No.1, Jan. 2014;
    11 Gilma Granados O, Carlos A Páez M, Fernando Martínez O, et al. 2005, Catalysis Today, 107-108: 589;
    12 Liu Xiang, Wu Xiaohua, Cao Hui, et al. 2004, Journal of Applied Physics, 95: 3141;
    13 Borras A, Sanchez-Valencia J R, Widmer R, et al.2009, Cryst. Growth Des., 9: 2868;
    14 Zheng Zhaoke, Huang Baibiao, Qin Xiaoyan, et al.2009, Chem. Eur. J., 15: 12576;
    15 Liu Min, Piao Lingyu, Zhao Lei, et al. 2010, Chem.Commun., 46: 1664;
    16 Zhu Aimin, Nie Longhui, Zhang Xiuling, et al. 2004,Plasma Science and Technology, 6: 2546;
    17 Yu Kehan, Bo Zheng, Lu Ganhua, et al. 2011,Nanoscale Research Letters, 6: 202;
    18 Bárdos L, Baránková H. 2010, Thin Solid Films, 518:6705;
    19 Lin Zeng, Wang Feng, Gao Ding, et al. 2013, Plasma Science and Technology, 15: 690;
    20 Ni Guohua, Zhao Peng, Cheng Cheng. 2012, Plasma Sources Sci. Technol., 21: 015009;
    21 Michael A L, Allan J L. 2005, Principles of Plasma Discharges and Materials Processing. John Wiley &Sons;
    22 Wang Dexin, Yang Qingyu, Guo Ying, et al. 2011, Ma-terials Letters, 65: 2526;
    23 Xu Xueji, Zhu Dingchang. 1996, Gas Discharge Physics. Fudan University Publishing House, Shang-hai (in Chinese) ;
    24 Boffard J B, Lin C C, DeJoseph Jr C A. 2004, J. Phys.D: Appl. Phys., 37: 143;
    25 A Fontcuberta i Morral, P Roca i Cabarrocas. 2002,Journal of Non-Crystalline Solids, 299-302: 196;
    26 P Roca i Cabarrocas. 2002, Curr. Opin. Solid State Mater. Sci., 6: 439;
    27 Glasner A, Kenat J. 1968, Journal of Crystal Growth,2: 119
  • Related Articles

    [1]Wei JIANG, Hao WU, Zhijiang WANG, Lin YI, Ya ZHANG. Gas breakdown in radio-frequency field within MHz range: a review of the state of the art[J]. Plasma Science and Technology, 2022, 24(12): 124018. DOI: 10.1088/2058-6272/aca648
    [2]Xiaoxi DUAN (段晓溪), Benqiong LIU (刘本琼), Huige ZHANG (张惠鸽), Ben LI (李犇), Jiting OUYANG (欧阳吉庭). Various patterns in dielectric barrier glow discharges simulated by a dynamic model[J]. Plasma Science and Technology, 2019, 21(8): 85401-085401. DOI: 10.1088/2058-6272/ab0d51
    [3]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [4]Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1
    [5]XIN Qing (辛青), LI Zhongjian (李中坚), LEI Lecheng (雷乐成), YANG Bin (杨彬). Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process[J]. Plasma Science and Technology, 2016, 18(9): 943-949. DOI: 10.1088/1009-0630/18/9/11
    [6]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [7]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [8]ZHENG Jinxing (郑金星), SONG Yuntao (宋云涛), HUANG Xiongyi (黄雄一), LU Kun (陆坤), XI Weibin (奚维斌), DING Kaizhon (丁开忠), YE Bin (叶斌), NIU Erwu (牛二武). Experimental Study on Paschen Tests of ITER Current Lead Insulation[J]. Plasma Science and Technology, 2013, 15(2): 152-156. DOI: 10.1088/1009-0630/15/2/15
    [9]WENG Ming (翁明), XU Weijun (徐伟军). The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube[J]. Plasma Science and Technology, 2012, 14(11): 1024-1029. DOI: 10.1088/1009-0630/14/11/12
    [10]WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.

Catalog

    Article views (683) PDF downloads (1250) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return