Advanced Search+
WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15
Citation: WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15

Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation

Funds: supported by National Natural Science Foundation of China (No.11165012), China Postdoctoral Science Foundation Funded Project (2011M501494, 2012T50831), Project of Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, Project of Northwest Normal University (NWNU-LKQN-11-9)
More Information
  • Received Date: August 21, 2013
  • Polymer thin film deposition using an atmospheric pressure micro-plasma jet driven by dual-frequency excitations is described in this paper. The discharge process was operated with a mixture of argon (6 slm) and a small amount of acetone (0-2100 ppm). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar spectra lines, we observed some spectra of C, CN, CH and C 2 . Through changing acetone content mixed in argon, we found that the optimum discharge condition for deposition can be characterized by the maximum concentration of carbonaceous species. The deposited film was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The XPS indicated that the film was mostly composed of C with trace amount of O and N elements. The FTIR suggested different carbon-containing bonds (-CH x, C=O, C=C, C-O-C) presented in the deposited film.
  • 1 Yasuda H. 1985, Plasma Polymerization. Academic Press, New York;
    2 Nakanishi K, Muguruma H, Karube I. 1996, Anal.Chem., 68: 1695;
    3 da Silva M L P, Tan I H, Nascimento Filho A P, et al.2003, Sensors and Actuators, B91: 362;
    4 Yu Y J, Kim J G, Cho S H, et al. 2003, Surf. Coat.Technol., 162: 161;
    5 Jiang H, Hong L G, Venkatasubramanian N, et al.2007, Thin Solid Films, 515: 3513;
    6 Cui N Y, Brown N M D. 2002, Applied Surface Sci-ence, 189: 31;
    7 Yi J W, Lee Y H, Farouk B. 2000, Thin Solid Films,374: 103;
    8 Da Cruz N C, Lopes B B, Rangel E C, et al. 2008,Surf. Coat. Technol., 203: 534;
    9 Lopes B B, Davanzo C U, Schreiner W, et al. 2008,Surf. Coat. Technol., 203 : 526;
    10 Chouquet C, Gerbaud G, Bardet M, et al. 2010, Surf.Coat. Technol., 204: 1339;
    11 Kim D B, Moon S Y, Jung H, et al. 2010, Physics of Plasmas, 17: 053508;
    12 Zhou Y J, Yuan Q H, Li F, et al. 2013, Physics of Plasmas, 20: 113502;
    13 Jiang N, Ji A L, Cao Z X. 2009, J. Appl. Phys., 106:013308;
    14 Beier O, Pfuch A, Horn K, et al. 2013, Plasma Process.Polym., 10: 7715 Cheng M L, Tang X L, Chen X L, et al. 2009, The Journal of Light Scattering, 21: 82;
    16 Wertheimer M R, Moisan M. 1985, J. Vac. Sci. Tech-nol., A3: 2643;
    17 Nikiforov A Y, Sarani A, Leys C. 2011, Plasma Sources Sci. Technol., 20: 015014;
    18 Jacob M V, Easton C D, Woods G S, et al. 2008, Thin Solid Films, 516: 3884;
    19 Imanaka H, Khare B N, Elsila J E, et al. 2004, Icarus,168: 344;
    20 Elzein T, Nasser-Eddine M, Delaite C, et al. 2004,Journal of Colloid and Interface Science, 273: 381;
    21 Grant J T, Jiang H, Tullis S, et al. 2005, Vacuum, 80:12
  • Related Articles

    [1]Yu ZHANG, Haozhe WANG, Tao HE, Yan LI, Ying GUO, Jianjun SHI, Yu XU, Jing ZHANG. The effects of radio frequency atmospheric pressure plasma and thermal treatment on the hydrogenation of TiO2 thin film[J]. Plasma Science and Technology, 2023, 25(6): 065504. DOI: 10.1088/2058-6272/acb24e
    [2]Qinghua HUANG (黄清华), Lin XIONG (熊琳), Xiaolong DENG (邓小龙), Zhan SHU (舒展), Qiang CHEN (陈强), Bing BAO (包兵), Mingli CHEN (陈明礼), Qing XIONG (熊青). Super-hydrophobic film deposition by an atmospheric-pressure plasma process and its anti-icing characteristics[J]. Plasma Science and Technology, 2019, 21(5): 55502-055502. DOI: 10.1088/2058-6272/ab01f4
    [3]Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e
    [4]Ling ZHANG (张玲), Guo CHEN (陈果), Zhibing HE (何智兵), Xing AI (艾星), Jinglin HUANG (黄景林), Lei LIU (刘磊), Yongjian TANG (唐永建), Xiaoshan HE (何小珊). Investigation of working pressure on the surface roughness controlling technology of glow discharge polymer films based on the diagnosed plasma[J]. Plasma Science and Technology, 2017, 19(7): 75505-075505. DOI: 10.1088/2058-6272/aa6618
    [5]Jiaojiao LI (李娇娇), Qianghua YUAN (袁强华), Xiaowei CHANG (常小伟), Yong WANG (王勇), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50kHz/ 33MHz dual-frequency atmospheric-pressure plasma jet[J]. Plasma Science and Technology, 2017, 19(4): 45505-045505. DOI: 10.1088/2058-6272/aa57e4
    [6]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [7]XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09
    [8]YUAN Ying (袁颖), YE Chao (叶超), CHEN Tian (陈天), GE Shuibin (葛水兵), LIU Huiming (刘卉敏), CUI Jin (崔进), XU Yijun (徐轶君), DENG Yanhong (邓艳红), NING Zhaoyuan (宁兆元). C2F6/O2/Ar Plasma Chemistry of 60MHz/2MHz Dual- frequency Discharge and Its Effect on Etching of SiCOH Low-k Films[J]. Plasma Science and Technology, 2012, 14(1): 48-53. DOI: 10.1088/1009-0630/14/1/11
    [9]CHENG Li (程立), SHI Jia-ming(时家明), XU Bo (许波). Analytical Expressions of Dual-Frequency Plasma Diagnostic Theory[J]. Plasma Science and Technology, 2012, 14(1): 37-39. DOI: 10.1088/1009-0630/14/1/09
    [10]HUANG Hongwei (黄宏伟), YE Chao (叶超), XU Yijun (徐轶君), YUAN Yuan (袁圆), SHI Guofeng (施国峰), NING Zhaoyuan (宁兆元). Effect of Low-frequency Power on F, CF2 Relative Density and F/CF2 Ratio in Fluorocarbon Dual-Frequency Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 566-570.
  • Cited by

    Periodical cited type(11)

    1. Zhang, B., Ping, T., Mu, L. et al. Highly selective conversion of alkali lignin into aromatic monomers by pulse dielectric barrier discharge plasma at mild reaction conditions. Sustainable Materials and Technologies, 2023. DOI:10.1016/j.susmat.2023.e00643
    2. Liu, Z.-B., Wang, X.-C., Zhang, Y.-T. Numerical Study on Kinetic Effects of Driving Frequency in Atmospheric Radio Frequency Discharges Using Deep Neural Network. IEEE Transactions on Plasma Science, 2023, 51(5): 1212-1222. DOI:10.1109/TPS.2023.3267733
    3. Ai, F., Liu, Z.-B., Zhang, Y.-T. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning | [结合机器学习的大气压介质阻挡放电数值模拟研究]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(24): 245201. DOI:10.7498/aps.71.20221555
    4. Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Comparing Study on Formation of Large Discharge Currents in Atmospheric Pulse-Modulated Radio Frequency Discharges. IEEE Transactions on Plasma Science, 2022, 50(9): 2796-2804. DOI:10.1109/TPS.2022.3188019
    5. Wang, X., Gao, S., Zhang, Y. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium-oxygen admixtures. Plasma Science and Technology, 2022, 24(8): 085401. DOI:10.1088/2058-6272/ac67bf
    6. Gao, S.-H., Cheng, R.-G., Zhang, Y.-T. Numerical Study on Operation Optimization of Atmospheric Radio-Frequency Glow Discharges Modulated by Pulses. IEEE Transactions on Plasma Science, 2022, 50(3): 609-618. DOI:10.1109/TPS.2022.3147853
    7. Gao, S.-H., Wang, X.-L., Zhang, Y.-T. Modeling study on the enhancement of atmospheric pulse-modulated radio-frequency discharge assisted by pulsed voltage. Physics of Plasmas, 2021, 28(11): 0061546. DOI:10.1063/5.0061546
    8. ZHAO, P., CHANG, C., SHU, P. et al. Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air. Plasma Science and Technology, 2021, 23(8): 085003. DOI:10.1088/2058-6272/ac0688
    9. Wang, X.-L., Gao, S.-H., Zhang, Y.-T. Numerical study on optimization of atmospheric pulse-modulated radio frequency discharges in the very high frequency range. Physics of Plasmas, 2021, 28(7): 073511. DOI:10.1063/5.0048966
    10. Shen, J., Cheng, C., Xu, Z. et al. Principles and Characteristics of Cold Plasma at Gas Phase and Gas-Liquid Phase. Applications of Cold Plasma in Food Safety, 2021. DOI:10.1007/978-981-16-1827-7_1
    11. Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers | [脉冲调制条件下介质阻挡特高频放电特性的数值模拟]. Wuli Xuebao/Acta Physica Sinica, 2020, 69(11): 115204. DOI:10.7498/aps.69.20191853

    Other cited types(0)

Catalog

    Article views (432) PDF downloads (1765) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return