Advanced Search+
YU Minghao(喻明浩), Yusuke TAKAHASHI, Hisashi KIHARA, Ken-ichi ABE, Kazuhiko YAMADA, Takashi ABE. Numerical Investigation of Flow Fields in Inductively Coupled Plasma Wind Tunnel[J]. Plasma Science and Technology, 2014, 16(10): 930-940. DOI: 10.1088/1009-0630/16/10/06
Citation: YU Minghao(喻明浩), Yusuke TAKAHASHI, Hisashi KIHARA, Ken-ichi ABE, Kazuhiko YAMADA, Takashi ABE. Numerical Investigation of Flow Fields in Inductively Coupled Plasma Wind Tunnel[J]. Plasma Science and Technology, 2014, 16(10): 930-940. DOI: 10.1088/1009-0630/16/10/06

Numerical Investigation of Flow Fields in Inductively Coupled Plasma Wind Tunnel

Funds: supported by Grant-in-Aid for Scientific Research (No. 23560954), sponsored by the Japan Society for the Promotion of Science
More Information
  • Received Date: November 17, 2013
  • Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as the working gas. Two-dimensional compressible axisymmetric Navier- Stokes (N-S) equations that took into account 11 species and 49 chemical reactions of air, were solved. A heat source model was used to describe the heating phenomenon instead of solving the electromagnetic equations. In the vacuum chamber, a four-temperature model was coupled with N-S equations. Numerical results for the 10 kW ICP wind tunnel are presented and discussed in detail as a representative case. It was found that the plasma flow in the vacuum chamber tended to be in local thermochemical equilibrium. To study the influence of operation conditions on the flow field, simulations were carried out for different chamber pressures and/or input powers. The computational results for the above two ICP wind tunnels were compared with corresponding experimental data. The computational and experimental results agree well, therefore the flow fields of ICP wind tunnels can be clearly understood.
  • 1 Bonulos M I. 1985, Pure Appl. Chem., 57: 1321
    2 Bernardi D, Colomobo V, Ghedini E, et al. 2003, Eur. Phys. J. D, 28: 423
    3 Cheng J, Zhu Y, Ji L H. 2012, Plasma Sci. Technol.,14: 1059
    4 Yu B W, Girshick S L. 1991, J. Appl. Phys., 69: 656
    5 Barnes R M, Nikdel S. 1976, J. Appl. Phys., 47: 3929
    6 Tinck S, Bogaerts A. 2011, Plasma Sources Sci. Technol., 20: 5008
    7 Lenzner S, Auweter-Kurtz M, Heiermant J, et al. 2000, J. Thermophys. Heat Tr., 14: 388
    8 Vasil'evskii S A, Kolesnikov A F. 2000, Fluid Dynamics, 35: 769
    9 Punjabi S B, Joshi N K, Mangalvedekar H A, et al. 2012, Phys. Plasmas, 19: 012108
    10 Degrez G, Vanden Abeele D, Barbante P, et al. 2004,Int. J. Numer. Method H., 14: 538
    11 Sumi T, Fujita K, Kurotaki T, et al. 2005, Trans.Japan Soc. Aero. Space Sci., 48: 40
    12 Suzuki T, Fujita K, Sakai T. 2010, J. Thermophys. Heat Tr., 24: 589
    13 Hirata N, Kanzaka T, Takahashi Y, et al. 2012, Comput. Therm. Sci., 4: 225
    14 Vanden Abeele D, Degrez G. 2000, AIAA J., 38: 234
    15 Takahashi Y, Kihara H, Abe K. 2010, J. Thermophys. Heat Tr., 24: 31
    16 Takahashi Y, Kihara H, Abe K. 2011, J. Phys. D: Appl. Phys., 44: 085203
    17 Park C. 1990, Nonequilibrium Hypersonic Aerother-modynamics. Wiley, New York
    18 Gupta R, Yos J, Thompson R, et al. 1990,A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. NASA Reference Publication 1232, National Aeronautics and Space Administration, Washington, USA
    19 Silvester P. 1964, Modern Electromagnetic fields, Prentice-Hall, New Jersey
    20 Xue S, Proulx P, Boulos M I. 2001, J Phys. D: Appl.Phys., 34: 1897
    21 Tanaka Y. 2009, Thin Solid Films, 518: 936
    22 Chen X. 1990, Int. J. Heat Mass Tran., 33: 815
    23 Fujita K, Mizuno M, Ishida K, et al. 2008, J. Thermophys. Heat Tr., 22: 685
    24 Reed T B. 1961, J. Appl. Phys., 32: 821
    25 Fujita K, Mizuno M, Ishida K, et al. 2004, Spectroscopic measurement of ICP-heated wind tunnel plasma. 37th AIAA Thermophysics Conference, Portland, Oregon
    26 Park C. 1988, J. Thermophys. Heat Tr., 2: 8
    27 Yos J M. 1963, Transport properties of nitrogen, hydrogen oxygen and air to 30,000 K. TRAD-TM-63-7, Research and Advanced Development Division, AVCO Corp.28 Fertig M, Dohr A, Fr?uhaufu H H. 1998, Transport coeffcients for high-temperature nonequilibrium air flows. 7th AIAA/ASME Joint Thermophysics and Heat Transfer, Albuquerque, USA
    29 Fertig M, Dohr A, Frühaufu H H. 2001, J. Thermophys. Heat Tr., 15: 148
    30 Curtiss C F, Hirschfelder J O. 1949, J. Chem. Phys., 17: 550
    31 Shima E, Kitamaru K. 2011, AIAA J., 49: 1693
    32 Kitamaru K, Shima E, Fujimoto K, et al. 2011, Commun. Comput. Phys., 10: 90
    33 Leer B V. 1979, J. Comput. Phys., 32: 101
    34 Bussing T R A, Murman E M. 1988, AIAA J., 26: 1070
    35 Jameson A, Yoon S. 1987, AIAA J., 25: 929
    36 Blazek J. 2001, Computational Fluid Dynamics: Principles and Applications. Elservier, Baden-Daettwil, Switzerland
    37 Yamada K, Maeno H, Miyatani S, et al. 2013, The development of 10 kW and '75 mm large diameter ICP heater. Symposium on Flight Mechanics and Astrodynamics, Kanagawa, Japan
    38 Ito T, Ishida K, Mizuno M, et al. 2003, 110 kW new high enthalpy wind tunnel heated by inductively coupled plasma. 12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, Virginia
    39 Suzuki T, Fujita K, Ando K, et al. 2008, J. Thermophys. Heat Tr., 22: 382
  • Related Articles

    [1]Zihao LIU (刘子豪), Xiang ZHOU (周翔), Renjie ZHU (朱仁杰), Li ZHAO (赵丽), Lingfeng WEI (魏凌峰), Zejie YIN (阴泽杰). Development of a data acquisition and control system for the International Thermonuclear Experimental Reactor neutron flux monitor[J]. Plasma Science and Technology, 2020, 22(1): 15601-015601. DOI: 10.1088/2058-6272/ab46e0
    [2]Meichu HUANG (黄梅初), Chundong HU (胡纯栋), Yuanzhe ZHAO (赵远哲), Caichao JIANG (蒋才超), Yahong XIE (谢亚红), Shiyong CHEN (陈世勇), Qinglong CUI (崔庆龙). The development of data acquisition and control system for extraction power supply of prototype RF ion source[J]. Plasma Science and Technology, 2018, 20(8): 85602-085602. DOI: 10.1088/2058-6272/aabde5
    [3]Wei LIU (刘伟), Chundong HU (胡纯栋), Sheng LIU (刘胜), Shihua SONG (宋士花), Jinxin WANG (汪金新), Yan WANG (王艳), Yuanzhe ZHAO (赵远哲), LizhenLIANG (梁立振). Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source[J]. Plasma Science and Technology, 2017, 19(12): 125605. DOI: 10.1088/2058-6272/aa8cc1
    [4]Xiaodan ZHANG (张小丹), Xiaoying WANG (王晓英), Chundong HU (胡纯栋), Caichao JIANG (蒋才超), Yahong XIE (谢亚红), Yuanzhe ZHAO (赵远哲). The development of data acquisition and processing application system for RF ion source[J]. Plasma Science and Technology, 2017, 19(7): 75602-075602. DOI: 10.1088/2058-6272/aa61f5
    [5]HU Chundong (胡纯栋), XIE Yahong (谢亚红), XIE Yuanlai (谢远来), LIU Sheng (刘胜), XU Yongjian (许永建), LIANG Lizhen (梁立振), JIANG Caichao (蒋才超), SHENG Peng (盛鹏), GU Yuming (顾玉明), LI Jun (李军), LIU Zhimin (刘智民). Overview of Development Status for EAST-NBI System[J]. Plasma Science and Technology, 2015, 17(10): 817-825. DOI: 10.1088/1009-0630/17/10/02
    [6]ZHANG Xiaodan (张小丹), HU Chundong (胡纯栋), SHENG Peng (盛鹏), ZHAO Yuanzhe (赵远哲), WU Deyun (吴德云), CUI Qinglong (崔庆龙). Development of Data Processing Software for NBI Spectroscopic Analysis System[J]. Plasma Science and Technology, 2015, 17(4): 327-330. DOI: 10.1088/1009-0630/17/4/12
    [7]ZHANG Xiaodan(张小丹), HU Chundong(胡纯栋), SHENG Peng(盛鹏), ZHAO Yuanzhe(赵远哲), WU Deyun(吴德云), CUI Qinglong(崔庆龙). The Implementation of Computer Data Processing Software for EAST NBI[J]. Plasma Science and Technology, 2014, 16(10): 984-987. DOI: 10.1088/1009-0630/16/10/15
    [8]YANG Fei(杨飞), XIAO Bingjia(肖炳甲), ZHANG Ruirui(张睿瑞). Construction and Implementation of the Online Data Analysis System on EAST[J]. Plasma Science and Technology, 2014, 16(5): 521-526. DOI: 10.1088/1009-0630/16/5/13
    [9]MA Wendong(马文东), SHAN Jiafang(单家方), XU Handong(徐旵东), HU Huaichuan(胡怀传), WANG Mao(王茂), WU Zege(吴则格). Power Control and Data Acquisition System for High Power Microwave Test Bench[J]. Plasma Science and Technology, 2014, 16(4): 415-419. DOI: 10.1088/1009-0630/16/4/21
    [10]Amit K Srivastava, Manika Sharma, Imran Mansuri, Atish Sharma, Tushar Raval, Subrata Pradhan. Development and Integration of a Data Acquisition System for SST-1 Phase-1 Plasma Diagnostics[J]. Plasma Science and Technology, 2012, 14(11): 1002-1007. DOI: 10.1088/1009-0630/14/11/08

Catalog

    Article views (376) PDF downloads (1514) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return