Advanced Search+
LIN Qifu(林启富), NI Guohua(倪国华), JIANG Yiman(江贻满), WU Wenwei(吴文伟), MENG Yuedong(孟月东). Degradation of Alizarin Red by Hybrid Gas-Liquid Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(11): 1036-1041. DOI: 10.1088/1009-0630/16/11/07
Citation: LIN Qifu(林启富), NI Guohua(倪国华), JIANG Yiman(江贻满), WU Wenwei(吴文伟), MENG Yuedong(孟月东). Degradation of Alizarin Red by Hybrid Gas-Liquid Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(11): 1036-1041. DOI: 10.1088/1009-0630/16/11/07

Degradation of Alizarin Red by Hybrid Gas-Liquid Dielectric Barrier Discharge

Funds: supported by National Natural Science Foundation of China (Nos.21171169, 21377133), and the Special Foundation of the President of Hefei Institute of Physical Science, Chinese Academy of Sciences (No.YZJJ201331)
More Information
  • Received Date: October 15, 2013
  • A system based on dielectric barrier discharge (DBD) with improved discharge sta- bility and homogeneity was used for the degradation of Alizarin Red (AR). This special structure of the DBD system is characterized by the high voltage electrode, which is covered with a quartz tube and partially immersed in water, and by directly using the water as the ground electrode. A transition was realized from the filamentary mode for the conventional structure of the DBD to the semi-homogeneous mode for such a configuration of the plasma discharge. The spectra of plasma are dominated by N 2 molecular lines in the ultraviolet-A radiation region. Plasma degra- dation of AR in this system exhibited pseudo-first-order reaction kinetics. The degradation rate of AR reached 95% or so after 14 min treatment under favorable conditions. Alkaline conditions are favorable for the degradation of AR. The increase of conductivity of the solution, input power and usage of oxygen bubbling could enhance AR degradation.
  • 1 Locke B R, Sato M, Sunka P, et al. 2006, Ind. Eng.Chem. Res., 45: 882
    2 Yang H, Zhang X S, Wen S, et al. 2009, Chem. Eng.Technol., 32: 887
    3 Lohse S, Michels A, Tombrink S, et al. 2009, Chem.Eng. Technol., 32: 1724
    4 Chang M B, Lee H M. 1998, Chem. Eng. Technol., 21:987
    5 Reddy E L, Karuppiah J, Renken A, et al. 2012, Chem.Eng. Technol., 35: 2030
    6 Kirkpatrick M J, Locke B R. 2005, Ind. Eng. Chem.Res., 44: 4243
    7 Magureanu M, Piroi D, Gherendi F, et al. 2008, Plasma Chem. Plasma Process., 28: 677
    8 Du Ch M, Yan J H, Cheron B G. 2007, Plasma Chem.Plasma Process., 27: 635
    9 Trushkin A N, Grushin M E, Kochetov I V, et al. 2013,Plasma Phys. Rep., 39: 167
    10 Demirev A, Nenov V. 2005, Ozone Sci. Eng., 27: 475
    11 Yan J H, Du C M, Li X D, et al. 2005, Plasma Sources Sci. Technol., 14: 637
    12 Liu Y J, Jiang X Z. 2005, Environ. Sci. Technol., 39:8512
    13 Xue J, Chen L, Wang H L. 2008, Chem Eng. J., 138:120
    14 Tang J, Jiang W M, Zhao W, et al. 2013, Appl. Phys.Lett., 102: 033503
    15 Chen G L, Chen S H, Zhou M Y, et al. 2006, Plasma Sources Sci. Technol., 15: 603
    16 Baroch P, Saito N, Takai O. 2008, J. Phys. D: Appl.Phys., 41: 085207
    17 Zhang S, Wang W C, Yang D Z, et al. 2012, IEEE Trans. Plasma Sci., 40: 2191
    18 Wang C, Srivastava N. 2012, Eur. Phys. J., D60: 465
    19 Mok Y S, Jo Jin-O, Christopher Whitehead J. 2008,Chem. Eng. J., 142: 56
    20 Panizza M, Cerisola G. 2009, Water Res., 43: 339
    21 Chen G L, Zhou M Y, Chen S H, et al. 2009, Mater.,172: 786
    22 Tang Q, Jiang W J, Zhang Y, et al. 2009, Plasma Chem. Plasma Process., 29: 291
    23 Zhang L, Sun B, Zhu X M. 2009, J. Electrosta. T., 67:62
    24 Tezcanli-Guyer G, Ince N H. 2004, Ultrasonics, 42: 603
    25 Wu J N, Wang T W. 2001, Waer. Res., 35: 1093
    26 Nishioka H, Saito H, Watanabe T. 2009, Thin Solid Films, 518: 924
    27 Sun B, Sato M, Clements J S. 2000, Environ. Sci. Technol., 34: 509

Catalog

    Article views (451) PDF downloads (994) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return