Advanced Search+
ZHANG Jialiang (张家良), WANG Shangmin (王尚民), ZHAO Lixian (赵丽贤), LIU Liying (刘莉莹), WANG Dezhen (王德真). Feasibility of Trace Alcohol Congener Detection and Identification Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(12): 1119-1125. DOI: 10.1088/1009-0630/16/12/07
Citation: ZHANG Jialiang (张家良), WANG Shangmin (王尚民), ZHAO Lixian (赵丽贤), LIU Liying (刘莉莹), WANG Dezhen (王德真). Feasibility of Trace Alcohol Congener Detection and Identification Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(12): 1119-1125. DOI: 10.1088/1009-0630/16/12/07

Feasibility of Trace Alcohol Congener Detection and Identification Using Laser-Induced Breakdown Spectroscopy

Funds: supported by National Natural Science Foundation of China (Nos. 11375041, 10675028), the Fundamental Research Funds for the Central Universities (No. DUT11ZD(G)06) and the Fund of the Key Laboratory of Chemical Laser, CAS (No. 20131008)
More Information
  • Received Date: December 08, 2013
  • In this paper, a feasible scheme is reported for the detection and identification of trace alcohol congeners that have identical elemental composition using laser-induced breakdown spectroscopy (LIBS). In the scheme, an intensive pulsed laser is used to break down trace alcohol samples and the optical emission spectra of the induced plasma are collected for the detection and identification of alcohol molecules. In order to prepare trace alcohol samples, pure ethanol or methanol is bubbled by argon carrier gas and then mixed into matrix gases. The key issue for the scheme is to constitute indices from the LIBS data of the alcohol samples. Two indices are found to be suitable for alcohol detection and identification. One is the emission intensity ratio (denoted as H/C) of the hydrogen line (653.3 nm) to the carbon line (247.9 nm) for identification and the other is the ratio of the carbon line (as C/Ar) or the hydrogen line (as H/Ar) to the argon lines (866.7 nm) for quantitative detection. The calibration experiment result shows that the index H/C is specific for alcohol congeners while almost being independent of alcohol concentration. In detail, the H/C keeps a specific constant of 34 and 23 respectively for ethanol and methanol. In the meanwhile, the C/Ar and H/Ar indices respond almost linearly to the alcohol concentration below 1300 ppm, and are therefore competent for concentration measurement. With the indices, trace alcohol concentration measurement achieves a limit of 140 ppm using a laser pulse energy of 300 mJ.
  • 1.Singh J P, Thakur S N. 2007, Laser-Induced Breakdown Spectroscopy. Elsevier, Amsterdam
    2. Miziolek A W, Palleschi V, Schechter I. 2006, Laser Induced Breakdown Spectroscopy. Cambridge University Press, New York
    3. Cremers D A, Radziemski L J. 2006, Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley {\&} Sons, Chichester
    4. Rusak D A, Castle B C, Smith B W, et al. 1997, Critical Reviews in Analytical Chemistry, 27: 257
    5. Ferioli F, Buckley S G. 2006, Combustion and Flame, 144: 435
    6. D'Ulivo A, Mester Z, Sturgeon R E. 2005, Spectrochimica Acta Part B: Atomic Spectroscopy, 60: 423
    7. Tran M, Sun Q, Smith B, et al. 2000, Analytica Chimica Acta, 419: 153
    8. Hanafi M, Omar M M, Gamal Y E E-D. 2000, Radiation Physics and Chemistry, 57: 11
    9. Aragon C, Aguilera J A, Penalba F. 1999, Applied Spectroscopy, 53: 1259
    10. Melikechi N, Ding H, Marcano O A, et al. 2008, AIP Conference Proceedings, 992: 1177
    11. Tran M, Sun Q, Smith B W, et al. 2001, J. Anal. At. Spectrom,16: 628
    12. Ciucci A, Corsi M, Palleschi V, et al. 1999, Appl. Spectrosc,53: 960
    13. Fantoni R, Caneve L, Colao F, et al. 2008, Spectrochimica Acta Part B, 63: 1097
    14. Wang Z, Li L, Yuan T, et al. 2011, J. Anal. At. Spectrom., 26:2274
    15. Li L, Wang Z, West L, et al. 2012, Spectrochimica Acta Part B,68: 58.
    16. Yu L Y, Lu J D, Chen W, et al. 2005, Plasma Sci. Technol., 7:3041
    17. Shah M L, Pulhani A K, Suri B M, et al. 2013, Plasma Sci.Technol., 15: 546
    18. Ismail M A, Imam H, Elhassan A, et al. 2004, J. Anal. At.Spectrom., 19: 489
    19. Cristoforetti G, Giacomo A De, Dell'Aglio M, et al. 2010,Spectrochimica Acta Part B: Atomic Spectroscopy, 65: 86
    20. Tanabe S, Matsuguma H, Okitsu K, et al. 2000, Chemistry Letters, 29: 1116
    21. Dikshit V, Yueh F Y, Singh J P, et al. 2012, Spectrochimica Acta Part B: Atomic Spectroscopy, 68: 65
    22. Zhu D H, Wang X, Ni X W, et al. 2011, Plasma Sci. Technol., 13:486
    23. Ashkenazy J, Kipper R, Caner M. 1991, Phys. Rev. A, 43: 5568
    24. Hey J D. 1976, J. Quant. Spectrosc. Radial. Tranfer., 16: 69
  • Related Articles

    [1]S J KIM, J J LEE, Y S LEE, J H KIM, S J YOU. Computational study on influence of RF shielding box on inductance of coil[J]. Plasma Science and Technology, 2019, 21(6): 64004-064004. DOI: 10.1088/2058-6272/ab0d42
    [2]Qi WANG (汪启), Qingquan YANG (杨清泉), Zhengmao SHENG (盛正卯), Guosheng XU (徐国盛), Jinping QIAN (钱金平), Ning YAN (颜宁), Yifeng WANG (王一丰), Heng ZHANG (张恒). Dependence of the internal inductance on the radial distance between the primary and secondary X-point surfaces in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105101. DOI: 10.1088/2058-6272/aad326
    [3]Shoufeng TANG (唐首锋), Na LI (李娜), Jinbang QI (綦金榜), Deling YUAN (袁德玲), Jie LI (李杰). Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration[J]. Plasma Science and Technology, 2018, 20(5): 54013-054013. DOI: 10.1088/2058-6272/aaa7e9
    [4]LU Xiaofei (陆小飞), FU Peng (傅鹏), ZHUANG Ming (庄明), QIU Lilong (邱立龙), HU Liangbing (胡良兵). Process Modeling and Dynamic Simulation for EAST Helium Refrigerator[J]. Plasma Science and Technology, 2016, 18(6): 693-698. DOI: 10.1088/1009-0630/18/6/18
    [5]CHANG Lei (苌磊), LI Yinghong (李应红), WU Yun (吴云), ZHANG Huijie (张辉洁), WANG Weimin (王卫民), SONG Huimin (宋慧敏). Dynamic Control of Defective Gap Mode Through Defect Location[J]. Plasma Science and Technology, 2016, 18(1): 1-5. DOI: 10.1088/1009-0630/18/1/01
    [6]DU Hongfei (杜红飞), CHEN Dehong (陈德鸿), DUAN Wenxue (段文学), JIANG Jieqiong (蒋洁琼), WU Yican (吴宜灿), FDS Team. Physics Analysis and Optimization Studies for a Fusion Neutron Source Based on a Gas Dynamic Trap[J]. Plasma Science and Technology, 2014, 16(12): 1153-1157. DOI: 10.1088/1009-0630/16/12/12
    [7]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [8]SHENG Liang(盛亮), LI Yang(李阳), SUN Tieping(孙铁平), CONG Peitian(丛培天), ZHANG Mei(张美), PENG Bodong(彭博栋), ZHAO Jizhen(赵吉祯), YUE Zhiqin(岳志勤), WEI Fuli(魏福利), YUAN Yuan(袁媛). Optical Diagnostics of Multi-Gap Gas Switches for Linear Transformer Drivers[J]. Plasma Science and Technology, 2014, 16(7): 677-682. DOI: 10.1088/1009-0630/16/7/08
    [9]LIU Peng (刘鹏), SUN Fengju (孙凤举), WEI Hao (魏浩), Wang Zhiguo (王志国), YIN Jiahui (尹佳辉), QIU Aici (邱爱慈). Influences of Switching Jitter on the Operational Performances of Linear Transformer Drivers -Based Drivers[J]. Plasma Science and Technology, 2012, 14(4): 347-352. DOI: 10.1088/1009-0630/14/4/15
    [10]LI Miaohui(李妙辉), DING Bojiang(丁伯江), LI Wenke(李文科), KONG Erhua(孔二华), SHAN Jiafang(单家方), LIU Fukun(刘甫坤), WANG Mao(王茂), XU Handong(徐旵东). An Investigation of LHCD Efficiency and Transformer Recharging in the EAST Tokamak[J]. Plasma Science and Technology, 2012, 14(3): 201-206. DOI: 10.1088/1009-0630/14/3/04

Catalog

    Article views (370) PDF downloads (1148) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return