Advanced Search+
LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), CHEN Zhenmao (陈振茂). A Moving Coordinate Numerical Method for Analyses of Electromagneto-Mechanical Coupled Behavior of Structures in a Strong Magnetic Field Aiming at Application to Tokamak Structure[J]. Plasma Science and Technology, 2014, 16(12): 1163-1170. DOI: 10.1088/1009-0630/16/12/14
Citation: LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), CHEN Zhenmao (陈振茂). A Moving Coordinate Numerical Method for Analyses of Electromagneto-Mechanical Coupled Behavior of Structures in a Strong Magnetic Field Aiming at Application to Tokamak Structure[J]. Plasma Science and Technology, 2014, 16(12): 1163-1170. DOI: 10.1088/1009-0630/16/12/14

A Moving Coordinate Numerical Method for Analyses of Electromagneto-Mechanical Coupled Behavior of Structures in a Strong Magnetic Field Aiming at Application to Tokamak Structure

Funds: supported by National Magnetic Confinement Fusion Program of China (No. 2013GB113005), the National Natural Science Foun- dation of China (Nos. 51277139, 11321062) and the National 973 Program of China (No. 2011CB610303)
More Information
  • Received Date: December 19, 2013
  • Analysis of the electromagneto-mechanical coupling effect contributes greatly to the high accuracy estimation of the EM load of many EM devices, such as a tokamak structure during plasma disruption. This paper presents a method for the numerical analysis of the electromagneto- mechanical coupling effect on the basis of Maxwell’s equations in the Lagrangian description and staggered load transfer scheme, which can treat the coupled behaviors of magnetic damping and magnetic stiffness effects at the same time. Codes were developed based on the ANSYS development platform and were applied to solve two typical numerical examples: the TEAM Problem 16 and dynamic behavior analysis of a shallow arch under electromagnetic force. The good consistency of numerical results and experimental data demonstrates the validity and accuracy of the proposed method and the related numerical codes.
  • 1 Albanese R, Fresa R and Palumbo M F, et al. 2010,IEEE Trans. Magnetics, 46: 2935
    2.Kim D H, Oh D K and Pak S, et al. 2010, Fusion Engineering and Design, 85: 1747
    3. Kotulski J D, Coats R S and Pasik M F. 2008, Fusion Engineering and Design, 83: 1068
    4. Song Y, Yao D and Wu S, et al. 2003, Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 39: 68 (inChinese)
    5.Jordan T. 1998, Fusion Engineering and Design, 43: 173
    6.Takagi T, Yoshida Y and Ruatto P, et al. 1998, Fusion Engineering and Design, 41: 313
    7.Turner L R and Hua T Q. 1990, COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Eneineering, 9: 205
    8.Takagi T, Matsuda S and Tani J, et al. 1992, IEEE Trans. Magnetics, 28: 1259
    9. Liu T, Yuan Z and Li Y, et al. 2013, Plasma Science and Technology, 15: 252
    10.Takagi T.1995, COMEPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Eneineering, 14: 77
    11.Niho T, Horie T and Tanaka Y. 2000, IEEE Trans. Magnetics, 36:1373
    12. Albanese R, Hantila F I and Preda G, et al. 1998, IEEE Trans.Magnetics, 34: 2529
    13. Niikura S and Kameari A. 1994, IEEE Trans. Magnetics, 30:3284
    14.Demachi K, Yoshida Y and Miya K. 1995, Fusion Engineering and Design, 27: 490
    15.Li W, Yuan Z and Wu W, et al. 2013, Plasma Science and Technology, 15: 175
    16. Kurz S, Fetzer J and Lehner G, et al. 1998, IEEE Trans. Magnetics, 34: 3068
    17. Kameari A. 1981, Journal of Computational Physics, 42: 124
    18.Kameari A. 1990, IEEE Trans. Magnetics, 26: 466
    19.Bossavit A. 1991, Eur. J. Mech. B, 10: 474
    20.Kameari A. 1993, International Journal of Applied Electromagnetics in Materials, 3: 231
    21.Belytschko T, Liu W K and Moran B. 2000, Nonlinear Finite Elements for Continua and Structures. Wiley
    22.Takagi T, Mohri Y and Tani J. 1991, International Journal of Applied Electromagnetics in Materials, 2: 183
  • Related Articles

    [1]J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [6]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [7]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [8]HUANG Fupei (黄福培), YANG Chicheng (杨麒正), YE Chao (叶超), GE Shuibing (葛水兵), et al.. Effect of Internal Antenna Coil Power on the Plasma Parameters in 13.56 MHz/60 MHz Dual-Frequency Sputtering[J]. Plasma Science and Technology, 2013, 15(12): 1197-1203. DOI: 10.1088/1009-0630/15/12/07
    [9]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [10]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07

Catalog

    Article views (395) PDF downloads (1074) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return