Advanced Search+
XIN Yu(信裕), DING Hongbin(丁洪斌). Ab initio Calculations of Electron-Impact Excitation Cross Sections for N 2[J]. Plasma Science and Technology, 2014, 16(2): 104-109. DOI: 10.1088/1009-0630/16/2/04
Citation: XIN Yu(信裕), DING Hongbin(丁洪斌). Ab initio Calculations of Electron-Impact Excitation Cross Sections for N 2[J]. Plasma Science and Technology, 2014, 16(2): 104-109. DOI: 10.1088/1009-0630/16/2/04

Ab initio Calculations of Electron-Impact Excitation Cross Sections for N 2

Funds: supported by National Natural Science Foundation of China (Nos.11175035, 10875023), the National Magnetic Confinement Fusion Science Program of China (No.2013GB109005), Chinesisch-Deutsches Forschungsprojekt (GZ768) and the Fundamental Research Funds for the Central Universities of China (No.DUT12ZD(G)01)
More Information
  • Received Date: August 21, 2013
  • One of the great difficulties in understanding nitrogen plasma elementary processes is the lack of an available database of the cross-sections of electron-impact excitations and radiations. Ab initio calculations of vibrational excitation cross sections for electron collisions with nitrogen molecules in low-lying states using similarity function approach, such as a-a', a-w, B-B' and B-W transition systems, are reported here for the first time. In the meantime, the average excitation energies of neighboring levels of these systems have been calculated. In order to obtain the cross sections, accurate spectroscopic constants and transition dipole moments have been investigated. Potential energy curves and other electronic transition dipole moments for the low-lying states of N 2 have been re-evaluated using complete active space self-consistent field (CASSCF) approach with aug-cc-pVqZ basis set. The calculated cross-sections could provide a database for studying the elementary processes and the properties in N 2 plasma.
  • 1 Lofthus A, Kropenie P H. 1977, Journal of Physical and Chemical Reference Data, 6: 117;
    2 Guerra V, Sá P A, Loureiro J. 2004, The European Physical Journal-Applied Physics, 28: 125;
    3 Gao L, Sun J, Feng C, et al. 2012, Physics of Plasmas, 19: 013505;
    4 Capitelli M, Colonna G, D'Ammando G, et al. 2013,Physics of Plasmas, 20: 101609;
    5 Clark R E H, Csanak G J, Abdallah J. 1991, Physical Review A, 44: 2874;
    6 Sun Q, Winstead C, McKoy V. 1992, Physical Review A, 46: 6987;
    7 Berrington K A, Eissner W B, Norrington P H. 1995,Computer Programs in Physics, 92: 190;
    8 Laporta V, Celiberto R, Wadehra J M, 2012, Plasma Sources Science and Technology, 21: 055018;
    9 Kato H, Suzuki D, Ohkawa M, et al. 2010, Physical Review A, 81: 042717;
    10 Eletski·3 A V, Smirnov B M. 1983, Sov. Phys. JETP, 57: 955;
    11 Adamson S, Astapenko V, Deminskii M, et al. 2007,Chemical Physics Letters, 436: 308;
    12 Adamson S, Astapenko V, Chernysheva I, et al. 2007,Journal of Physics D: Applied Physics, 40: 3857;
    13 Pople J A, Schlegel H B, Krishnan R, et al. 1981, Inter-national Journal of Quantum Chemistry: Symposium,15: 269;
    14 Roux F, Cerny D, Verges J. 1982, Journal of Molecular Spectroscopy, 94: 302;
    15 Roux F, Michaud F. 1988, Journal of Molecular Spec-troscopy, 129: 119;
    16 Werner H J, Knowles P J. 1988, Journal of Chemical Physics, 89: 5803;
    17 Knowles P J,Werner H J. 1988, Chemical Physics Let-ters, 145: 514;
    18 Trajmar S, Cartwright D C, Rice J K, et al. 1968,Journal of Chemical Physics, 49: 5464;
    19 Eletski·3 A V, Smirnov B M. 1968, Zh. Tekh. Fiz., 38:3;
    20 Morse P M. 1929, Physical Review, 34: 57;
    21 Dong S H, Lemus R, Frank A. 2002, International Journal of Quantum Chemistry, 86: 433 ;
    22 Werner H J, Knowles P J, Lindh R. 2008, MOLPRO version 2008.1. 2008;
    23 M?uller T, Dallos M, Lischka H, et al. 2001, Theoretical Chemistry Accounts, 105: 227;
    24 San-Fabián E, Pastor-Abia L. 2003, Theoretical Chem-istry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 110: 276;
    25 San Fabián E, Pastor-Abia L. 2007, Theoretical Chem-istry Accounts, 118: 637;
    26 Werner H J, Kalcher J, Reinsch E A. 1984, Journal of Chemical Physics, 81: 2420
  • Related Articles

    [1]Yutong YANG, Yunfeng LIANG, Wei YAN, Shuangbao SHU, Jiankun HUA, Song ZHOU, Qinghu YANG, Jinlong GUO, Ziyang JIN, Wei XIE, the J-TEXT Team. Characteristics of divertor heat flux distribution with an island divertor configuration on the J-TEXT tokamak[J]. Plasma Science and Technology, 2024, 26(12): 125102. DOI: 10.1088/2058-6272/ad6816
    [2]Ruirong LIANG, Xianzu GONG, Bin ZHANG, Zhendong YANG, Manni JIA, Youwen SUN, Qun MA, Jiayuan ZHANG, Yunchan HU, Jinping QIAN, the EAST Team. Study on divertor heat flux under n = 3 and n = 4 resonant magnetic perturbations using infrared thermography diagnostic in EAST[J]. Plasma Science and Technology, 2022, 24(10): 105103. DOI: 10.1088/2058-6272/ac73e6
    [3]Bo SHI (史博), Jinhong YANG (杨锦宏), Cheng YANG (杨程), Desheng CHENG (程德胜), Hui WANG (王辉), Hui ZHANG (张辉), Haifei DENG (邓海飞), Junli QI (祁俊力), Xianzu GONG (龚先祖), Weihua WANG (汪卫华). Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST[J]. Plasma Science and Technology, 2018, 20(7): 74006-074006. DOI: 10.1088/2058-6272/aab48e
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]GAO Jinming (高金明), LI Wei (李伟), LU Jie (卢杰), XIA Zhiwei (夏志伟), YI Ping (易萍), LIU Yi (刘仪), YANG Qingwei (杨青巍), HL-A Team. Infrared Imaging Bolometer for the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 590-594. DOI: 10.1088/1009-0630/18/6/02
    [6]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [7]ZHANG Bin (张斌), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), ZHANG Xiaodong (张晓东), WANG Fumin (王福敏), YANG Zhendong (仰振东), CHEN Meiwen (陈美文), WANG Xiaoqiong (王晓琼), the EAST Team. Study of Divertor Heat Patterns Induced by LHCD L-Mode Plasmas Using an Infra-Red Camera System on EAST[J]. Plasma Science and Technology, 2015, 17(10): 831-836. DOI: 10.1088/1009-0630/17/10/04
    [8]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [9]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [10]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07

Catalog

    Article views (143) PDF downloads (1361) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return