Advanced Search+
WU Xingwei(吴兴伟), LI Cong(李聪), ZHANG Chenfei(张辰飞), DING Hongbin(丁洪斌). High-Sensitivity In-Situ Diagnosis of NO 2 Production and Removal in DBD Using Cavity Ring-Down Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 142-148. DOI: 10.1088/1009-0630/16/2/10
Citation: WU Xingwei(吴兴伟), LI Cong(李聪), ZHANG Chenfei(张辰飞), DING Hongbin(丁洪斌). High-Sensitivity In-Situ Diagnosis of NO 2 Production and Removal in DBD Using Cavity Ring-Down Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 142-148. DOI: 10.1088/1009-0630/16/2/10

High-Sensitivity In-Situ Diagnosis of NO 2 Production and Removal in DBD Using Cavity Ring-Down Spectroscopy

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (No.2013GB109005), National Natural Science Foundation of China (Nos.11175035, 10875023), Chinesisch-Deutsches Forschungs Project (GZ768), the Fundamental Research Funds for the Central Universities (DUT12ZD(G)01) and Mmlab Research Project of China (DP1051208)
More Information
  • Received Date: August 20, 2013
  • A highly-sensitive in-situ diagnosis approach for nitrogen dioxide (NO 2 ) has been developed in dielectric barrier discharge (DBD) based on pulsed cavity ring-down spectroscopy (CRDS). Absorption bands of NO 2 in a spectral region from 508 nm to 509 nm were used, and a detection limit of 17.5 ppb was achieved. At this level of sensitivity, the quantitative and real-time monitoring of the production and removal of NO 2 are accomplished for the first time in the discharge region. By measuring the removal amount and rate at different NO 2 initial number densities from 1.54 × 10 13 cm −3 to 2.79 × 10 14 cm −3, we determined the relationship between them and NO 2 initial number densities. The removal amount linearly increases with the initial number density, while the removal rate increases logarithmically. At a lower initial number density, the removal rate is limited. By considering the chemical kinetic mechanism in plasma, a qualitative explanation for the above phenomena is proposed: the additional NO 2 produced by discharge limits the removal rate, since the NO 2 concentration is dominated by the competition between the forward reactions (production) and the reverse reactions (removal).
  • 1 Bilitza D, Rawer K, Bossy L, et al. 1993, Adv. Space Res., 13: 15
    2 Merche D, Vandencasteele N and Reniers F. 2012,Thin Solid Films, 520: 4219;
    3 Park G Y, Park S J, Choi M Y, et al. 2012, Plasma Sources Sci. Technol., 21: 043001;
    4 Rahman M. 2005, NOx Production by Ionisation Pro-cesses in Air [Ph.D]. Uppsala University, Sweden;
    5 Sathiamoorthy G, Kalyana S, FinneyWC, et al. 1999,Ind. Eng. Chem. Res., 38: 1844;
    6 Mok Y S and Nam I S. 2002, Chem. Eng. J., 85: 87;
    7 Takaki K and Fujiwara T. 2001, IEEE. Trans. Plasma Sci., 29: 518;
    8 Lowke J J and Morrow R. 1995, IEEE. Trans. PlasmaSci., 23: 661;
    9 Rousseau A, Gatilova L V, Ropcke J, et al. 2005, Appl.Phys. Lett., 86: 211501;
    10 Rousseau A, Dantier A, Gatilova L, et al. 2005, Plasma Sources Sci. Technol., 14: 70;
    11 Beckers F, Hoeben W, Pemen A, et al. 2013, J. Phys.D: Appl. Phys., 46: 295201;
    12 Platt U. 1999, Phys. Chem. Chem. Phys., 1: 5409;
    13 Thornton J A, Wooldridge P J and Cohen R C. 2000,Anal. Chem., 72: 528;
    14 Rao G N and Karpf A. 2010, Appl. Optics., 49: 4906;
    15 Ramponi A J, Milanovich F P, Kan T, et al. 1988,Appl. Optics., 27: 4606;
    16 Berden G, Peeters R and Meijer G. 2000, Int. Rev.Phys. Chem., 19: 565;
    17 Evertsen R, Staicu A, Dam N, et al. 2002, Appl. Phys.B: Lasers Opt., 74: 465;
    18 Yamamoto Y, Sumizawa H, Yamada H, et al. 2011,Appl. Phys. B: Lasers Opt., 105: 923;
    19 Biennier L, Salama F, Allamandola L J, et al. 2003, J.Chem. Phys., 118: 7863;
    20 Wang Chuji. 2007, J. Anal. At. Spectrom., 22: 1347;
    21 Plaksin V Y, Penkov O V, Ko M K, et al. 2010, Plasma Sci. Technol., 12: 688;
    22 Vinogradov I P and Wiesemann K. 1997, Plasma Sources Sci. Technol., 6: 307;
    23 Stefanovic I, Bibinov N K, Deryugin A A, et al. 2001,Plasma Sources Sci. Technol., 10: 406;
    24 Brown S S, Stark H and Ravishankara A R. 2002,Appl. Phys. B: Lasers Opt., 75:173;
    25 Voigt S, Orphal J and Burrows J. 2002, J. Photochem.Photobiol. A, 149: 1;
    26 Vandaele A C, Hermans C, Fally S, et al. 2002, J. Geo-phys. Res., 107: 4348;
    27 Nizkorodov S A, Sander S P and Brown L R. 2004, J.Phys. Chem. A, 108: 4864;
    28 Gatilova L V, Allegraud K, Guillon J, et al. 2007,Plasma Sources Sci. Technol., 16: S107;
    29 Henriques J, Tatarova E, Guerra V, et al. 2002, J.Appl. Phys., 91: 5622;
    30 DeMore W B, Sander S P, Golden D M, et al. 1997,Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. NASA Jet Propulsion Labo-ratory, Pasadena, California;
    31 Kossyi I, Kostinsky A Y, Matveyev A, et al. 1992,Plasma Sources Sci. Technol., 1: 207
  • Related Articles

    [1]Yutong YANG, Yunfeng LIANG, Wei YAN, Shuangbao SHU, Jiankun HUA, Song ZHOU, Qinghu YANG, Jinlong GUO, Ziyang JIN, Wei XIE, the J-TEXT Team. Characteristics of divertor heat flux distribution with an island divertor configuration on the J-TEXT tokamak[J]. Plasma Science and Technology, 2024, 26(12): 125102. DOI: 10.1088/2058-6272/ad6816
    [2]Ruirong LIANG, Xianzu GONG, Bin ZHANG, Zhendong YANG, Manni JIA, Youwen SUN, Qun MA, Jiayuan ZHANG, Yunchan HU, Jinping QIAN, the EAST Team. Study on divertor heat flux under n = 3 and n = 4 resonant magnetic perturbations using infrared thermography diagnostic in EAST[J]. Plasma Science and Technology, 2022, 24(10): 105103. DOI: 10.1088/2058-6272/ac73e6
    [3]Bo SHI (史博), Jinhong YANG (杨锦宏), Cheng YANG (杨程), Desheng CHENG (程德胜), Hui WANG (王辉), Hui ZHANG (张辉), Haifei DENG (邓海飞), Junli QI (祁俊力), Xianzu GONG (龚先祖), Weihua WANG (汪卫华). Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST[J]. Plasma Science and Technology, 2018, 20(7): 74006-074006. DOI: 10.1088/2058-6272/aab48e
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]GAO Jinming (高金明), LI Wei (李伟), LU Jie (卢杰), XIA Zhiwei (夏志伟), YI Ping (易萍), LIU Yi (刘仪), YANG Qingwei (杨青巍), HL-A Team. Infrared Imaging Bolometer for the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 590-594. DOI: 10.1088/1009-0630/18/6/02
    [6]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [7]ZHANG Bin (张斌), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), ZHANG Xiaodong (张晓东), WANG Fumin (王福敏), YANG Zhendong (仰振东), CHEN Meiwen (陈美文), WANG Xiaoqiong (王晓琼), the EAST Team. Study of Divertor Heat Patterns Induced by LHCD L-Mode Plasmas Using an Infra-Red Camera System on EAST[J]. Plasma Science and Technology, 2015, 17(10): 831-836. DOI: 10.1088/1009-0630/17/10/04
    [8]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [9]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [10]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07

Catalog

    Article views (262) PDF downloads (1187) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return