Advanced Search+
AN Jiutao(安久涛), SHANG Kefeng(商克峰), LU Na(鲁娜), HONG Yi(洪义), JIANG Yuze(姜雨泽), LI Jie(李杰), WU Yan(吴彦). Performance of Dielectric Barrier Discharge Reactors on Elemental Mercury Oxidation in the Coal-Fired Flue Gas[J]. Plasma Science and Technology, 2014, 16(2): 155-160. DOI: 10.1088/1009-0630/16/2/12
Citation: AN Jiutao(安久涛), SHANG Kefeng(商克峰), LU Na(鲁娜), HONG Yi(洪义), JIANG Yuze(姜雨泽), LI Jie(李杰), WU Yan(吴彦). Performance of Dielectric Barrier Discharge Reactors on Elemental Mercury Oxidation in the Coal-Fired Flue Gas[J]. Plasma Science and Technology, 2014, 16(2): 155-160. DOI: 10.1088/1009-0630/16/2/12

Performance of Dielectric Barrier Discharge Reactors on Elemental Mercury Oxidation in the Coal-Fired Flue Gas

Funds: supported by National Natural Science Foundation of China (No.51177007) and Ministry of Science and Technology of China (No.2009AA064101-4)
More Information
  • Received Date: August 20, 2013
  • The oxidation of elemental mercury (Hg0 ) by dielectric barrier discharge reactors was studied at room temperature, where concentric cylinder discharge reactor (CCDR) and surface discharge plasma reactor (SDPR) were employed. The parameters (e.g. Hg 0 oxidation efficiency, energy constant, energy yield, energy consumption, and O 3 concentration) were discussed. From comparison of the two reactors, higher Hg0 oxidation efficiency and energy constant in the SDPR system were obtained by using lower specific energy density. At the same applied voltage, energy yield in the SDPR system was larger than that in the CCDR system, and energy consumption in the SDPR system was much less. Additionally, more O 3 was generated in the SDPR system. The experimental results showed that 98% of Hg 0 oxidation efficiency, 0.6 J·L −1 of energy constant, 13.7 µg·kJ −1 of energy yield, 15.1 eV·molecule −1 of energy consumption, and 12.7 µg·J −1 of O 3 concentration were achieved in the SDPR system. The study reveals an alternative and economical technology for Hg 0 oxidation in the coal-fired flue gas.
  • 1 U. S. Environmental Protection Agency. 1997, Wash-ington, DC;
    2 Pavlish J H, Sondreal E A, Mann M D, et al. 2003,Fuel Process. Technol., 82: 89;
    3 Li H L, Wu C Y, Li Y, et al. 2011, Environ. Sci. Tech-nol., 45, 7394;
    4 Milford J B, Pienciak A. 2009, Environ. Sci. Technol.,43: 2669;
    5 Wu Y, Wang S, Streets D G, et al. 2006, Environ. Sci.Technol., 40: 5312;
    6 Zhang L, Wang S X, Meng Y, et al. 2012, Environ.Sci. Technol., 46: 6385;
    7 Zhuang Y, Thompson J S, Zygarlicke C J, et al. 2004,Environ. Sci. Technol., 38: 5803;
    8 Li H L, Wu C Y, Li Y, et al. 2012, Applied Catalysis B: Environmental., 111-112: 381;
    9 Senior C L, Helble J J, Saroˉm A F. 2000, Fuel Pro-cess. Technol., 65: 263;
    10 Galbreath K C, Zygarlicke C J. 1996, Environ. Sci.Technol., 30: 2421159 Plasma Science and Technology, Vol.16, No.2, Feb. 2014;
    11 Guti?errez Ortiz F J, Navarrete B, Ca~nadas L, et al.2007, Chem. Eng. J., 127: 131;
    12 Chen Z, Mathur V K. 2002, Ind. Eng. Chem. Res., 41:2082;
    13 Shang K F, Wu Y, Li J, et al. 2006, Plasma Chem.Plasma Process, 26: 443;
    14 Jiang N, Lu N, Li J, et al. 2012, Plasma Science and Technology, 14: 140;
    15 Wang M Y, Zhu T L, Luo H J, et al. 2011, Ind. Eng.Chem. Res., 50: 5914;
    16 Byun Y, Ko K B, Cho M, et al. 2008, Chemosphere,72: 652;
    17 Zhang Y, Li D, Wang H C. 2010, Plasma Science and Technology, 12: 702;
    18 Chen Z, Mannava D P, Mathur V K. 2006, Ind. Eng.Chem. Res., 45: 6050;
    19 Ko K B, Byun Y, Cho M, et al. 2008, Chemosphere,71: 1674;
    20 Jeong J, Jurng J. 2007, Chemosphere, 68: 2007 ;
    21 Kim H H, Kobara H, Ogata A, et al. 2005, IEEE Trans.Ind. Appl., 4: 206;
    22 Takaki K, Hatanaka Y, Arima K, et al. 2009, Vacuum,83: 128;
    23 Birdsall C M, Jenkins A C, Spadinger E. 1952, Anal.Chem., 24: 662;
    24 Li J, Wang T C, Lu N, et al. 2011, Plasma Sources Sci. Technol., 20: 034019;
    25 Liang W J, Fang H P, Li J, et al. 2011, Journal of Electrostatics, 69: 206;
    26 Mok Y S, Huh Y J. 2005, Plasma Chemistry and Plasma Processing, 25: 625;
    27 Kraus M, Eliasson B, Kogelschatz U, et al. 2001, Phys.Chem. Chem. Phys., 3: 294;
    28 Reddy E L, Biju V M, Subrahmanyam C. 2011, Int. J.Hydrogen Energy, 37: 1;
    29 Penetrante B M, Hsiao M C, Bardsley J N, et al. 1997,Plasma Sources Sci. Technol., 6: 251;
    30 Kim H H. 2004, Plasma Process. Polym., 1: 91;
    31 Marotta E, Callea A, Rea M, et al. 2007, Environ. Sci.Technol., 41: 5862;
    32 Naidis G V. 1997, J. Phys. D: Appl. Phys., 30: 1214;
    33 Marinov D, Guaitella O, Roussseau A, et al. 2010, J.Phys. D: Appl. Phys., 43: 115203;
    34 Malik M A, Kolb J F, Sun Y H, et al. 2011, Journal of Hazardous Materials, 197: 220;
    35 Guaitella O, Hubner M, Welzel S, et al. 2010, Plasma Sources Sci. Technol., 19: 045026
  • Related Articles

    [1]Yutong YANG, Yunfeng LIANG, Wei YAN, Shuangbao SHU, Jiankun HUA, Song ZHOU, Qinghu YANG, Jinlong GUO, Ziyang JIN, Wei XIE, the J-TEXT Team. Characteristics of divertor heat flux distribution with an island divertor configuration on the J-TEXT tokamak[J]. Plasma Science and Technology, 2024, 26(12): 125102. DOI: 10.1088/2058-6272/ad6816
    [2]Ruirong LIANG, Xianzu GONG, Bin ZHANG, Zhendong YANG, Manni JIA, Youwen SUN, Qun MA, Jiayuan ZHANG, Yunchan HU, Jinping QIAN, the EAST Team. Study on divertor heat flux under n = 3 and n = 4 resonant magnetic perturbations using infrared thermography diagnostic in EAST[J]. Plasma Science and Technology, 2022, 24(10): 105103. DOI: 10.1088/2058-6272/ac73e6
    [3]Bo SHI (史博), Jinhong YANG (杨锦宏), Cheng YANG (杨程), Desheng CHENG (程德胜), Hui WANG (王辉), Hui ZHANG (张辉), Haifei DENG (邓海飞), Junli QI (祁俊力), Xianzu GONG (龚先祖), Weihua WANG (汪卫华). Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST[J]. Plasma Science and Technology, 2018, 20(7): 74006-074006. DOI: 10.1088/2058-6272/aab48e
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]GAO Jinming (高金明), LI Wei (李伟), LU Jie (卢杰), XIA Zhiwei (夏志伟), YI Ping (易萍), LIU Yi (刘仪), YANG Qingwei (杨青巍), HL-A Team. Infrared Imaging Bolometer for the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 590-594. DOI: 10.1088/1009-0630/18/6/02
    [6]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [7]ZHANG Bin (张斌), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), ZHANG Xiaodong (张晓东), WANG Fumin (王福敏), YANG Zhendong (仰振东), CHEN Meiwen (陈美文), WANG Xiaoqiong (王晓琼), the EAST Team. Study of Divertor Heat Patterns Induced by LHCD L-Mode Plasmas Using an Infra-Red Camera System on EAST[J]. Plasma Science and Technology, 2015, 17(10): 831-836. DOI: 10.1088/1009-0630/17/10/04
    [8]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [9]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [10]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07

Catalog

    Article views (247) PDF downloads (1143) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return