Advanced Search+
Konstantinos N. KIOUSIS, Antonios X. MORONIS, Wolf G. FRUH. Electro-Hydrodynamic (EHD) Thrust Analysis in Wire-Cylinder Electrode Arrangement[J]. Plasma Science and Technology, 2014, 16(4): 363-369. DOI: 10.1088/1009-0630/16/4/11
Citation: Konstantinos N. KIOUSIS, Antonios X. MORONIS, Wolf G. FRUH. Electro-Hydrodynamic (EHD) Thrust Analysis in Wire-Cylinder Electrode Arrangement[J]. Plasma Science and Technology, 2014, 16(4): 363-369. DOI: 10.1088/1009-0630/16/4/11

Electro-Hydrodynamic (EHD) Thrust Analysis in Wire-Cylinder Electrode Arrangement

More Information
  • Received Date: December 02, 2012
  • The thrust generation by electro-hydrodynamic (EHD) effect has been studied for a wire-cylinder arrangement under high DC voltage. Series of measurements have been conducted in order to determine the relationship between generated thrust and corona discharge current, as well as its dependence on geometrical characteristics of the electrodes, e.g. electrode gap, wire and cylinder radii. The experimental investigation has shown a linear relationship between the generated thrust and the discharge current, while parametric analysis showed that increased electrode gap and emitter radius reduces the thrust. On the other hand, large gaps favor the thrust per unit power ratio.
  • 1 Townsend J S. 1915, Electricity in gases. Oxford Uni-versity Press, New York;
    2 Loeb L B. 1965, Electrical coronas. University of Cal-ifornia Press, London;
    3 Robinson M. 1962, A History of the Electric Wind.American Journal of Physics, 30: 366;
    4 Buehler D R. 2004, Journal of Space Mixing, 2: 1;
    5 Yamamoto T, Velkoff H R. 1981, Journal of Fluid Me-chanics, 108: 1;
    6 Nikas K S P, Varonos A A, Bergeles G C. 2005, Journal of Electrostatics, 63: 423;
    7 Cloupeau M, Prunet-Foch B. 1990, Journal of Electro-statics, 25: 165;
    8 Jaworek A, Sobczyk A T. 2008, Journal of Electrostat-ics, 66: 197;
    9 Goldman M. 1981, IEE Proceedings A, 128: 298;
    10 Goldman M, Goldman A, Sigfmond R S. 1985, Pure Appl. Chem., 57: 1353;
    11 Moreau E. 2007, Journal of Physics D: Applied Physics, 40: 605;
    12 Benard N, Jolibois J, Moreau E. 2009, Journal of Elec-trostatics, 67: 133;
    13 Grundmann S, Tropea C. 2007, Journal of Experi-ments in Fluids, 42: 653;
    14 Seyed-Yagoobi J. 2005, Journal of Electrostatics, 63:861;
    15 Owsenek B L, Seyed-Yaghoobi J. 1997, Journal of Heat Transfer, 119: 604;
    16 Huang R T, Sheu W J, Wang C C. 2009, Journal of Energy Conversion and Management, 50: 1789;
    17 Velasquez-Garcia L F, Akinwande A I, Martinez-Sanchez M. 2006, Journal of Microelectromechanical Systems, 15: 1260;
    18 Velasquez-Garcia L F, Akinwande A I, Martinez-Sanchez M. 2006, Journal of Microelectromechanical Systems, 15: 1272;
    19 Kirtley D, Fife J M. 2002, Modeling, simulation, and design of an electrostatic colloid thruster. The 29th IEEE International Conference on Plasma Sci-ence (ICOPS), Canada;
    20 Pekker L, Young M. 2011, Journal of Propulsion and Power, 27: 786, doi: 10.2514/1.B34097;
    21 Lin Z, Teck-Meng L. 2011, Thrust origin in EHD lifters. IEEE Industry Applications Society Annual Meeting (IAS), Orlando;
    22 Young M, Keith S, Pancotti A. 2009, An Overview of Advanced Concepts for Near-Space Systems. Air Force Research Laboratory, 10. E. Saturn Blvd. Ed-wards AFB, CA 93524, United States;
    23 Wilson J, Perkins H, Thompson W. 2009, An Investi-gation of Ionic Wind Propulsion. National Aeronautics and Space Administration (NASA) Glenn Research Center Cleveland, Ohio 44135, United States;
    24 Moreau E, Touchard G. 2008, Journal of Electrostat-ics, 66: 39;
    25 Matéo-Vélez J-C, Degond P, Rogier F, et al. 2008,Journal of Phys. D: Appl. Phys., 41: 1;
    26 Buchet B, Goldman M, Goldman A. 1966, Journal of Les Comptes Rendus de l'Académie des sciences, 263:356;
    27 Robinson M. 1961, Movement of Air in the Electric Wind of the Corona Discharge. Transactions of the American Institute of Electrical Engineers, Part I:Communication and Electronics, (Volume:80, Issue:2) ;
    28 Stuetzer O M. 1959, Journal of Applied Physics, 30:984;
    29 Robinson M. 1962, American Journal of Physics, 30:366;
    30 Christenson E A, Moller P S. 1967, AIAA Journal, 5:1768;
    31 Waters R T, Stark W B. 1975, Journal of Phys. D:Appl. Phys., 8: 416;
    32 Cooperman P. 1960, A theory for space-charge-limited currents with application to electrical precipitation.Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics,(Volume:79, Issue:1 ) ;
    33 Warburg E. 1899, Handbuch der Physik. Springer,Berlin;
    34 Kiousis K N, Moronis A X. 2011, Experimental Inves-tigation of EHD Flow in Wire to Cylinder Electrode Configuration. Proc. of 10th IASTED European Conf.(EUROPES '11), Crete, 21-26
  • Related Articles

    [1]Ziying REN, Liqiu WEI, Zexin LIU, Yanlin HU, Liang HAN, Hong LI, Yongjie DING, Xiufeng ZHONG. Thrust estimate method of an on-orbit Hall thruster using Hall drift current[J]. Plasma Science and Technology, 2024, 26(12): 125506. DOI: 10.1088/2058-6272/ad81cf
    [2]Dingchen LI, Chuan LI, Jiawei LI, Wendi YANG, Menghan XIAO, Ming ZHANG, Yong YANG, Kexun YU. Efficient direction-independent fog harvesting using a corona discharge device with a multi-electrode structure[J]. Plasma Science and Technology, 2022, 24(9): 095502. DOI: 10.1088/2058-6272/ac6be4
    [3]Zhongkai ZHANG (张仲恺), Guanrong HANG (杭观荣), Jiayun QI (齐佳运), Zun ZHANG (张尊), Zhe ZHANG (章喆), Jiubin LIU (刘久镔), Wenjiang YANG (杨文将), Haibin TANG (汤海滨). Design and fabrication of a full elastic sub-micron-Newton scale thrust measurement system for plasma micro thrusters[J]. Plasma Science and Technology, 2021, 23(10): 104004. DOI: 10.1088/2058-6272/ac1ac3
    [4]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [5]Tianwei LAI (赖天伟), Bao FU (付豹), Shuangtao CHEN (陈双涛), Qiyong ZHANG (张启勇), Yu HOU (侯予). Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem[J]. Plasma Science and Technology, 2017, 19(2): 25604-025604. DOI: 10.1088/2058-6272/19/2/025604
    [6]WANG Yuling (王玉玲), GAO Chao (高超), WU Bin (武斌), HU Xu (胡旭). Simulation of Flow Around Cylinder Actuated by DBD Plasma[J]. Plasma Science and Technology, 2016, 18(7): 768-774. DOI: 10.1088/1009-0630/18/7/12
    [7]ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09
    [8]YANG Fuxiang (杨富翔), MU Zongxin (牟宗信), ZHANG Jialiang (张家良). Discharge Modes Suggested by Emission Spectra of Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes[J]. Plasma Science and Technology, 2016, 18(1): 79-85. DOI: 10.1088/1009-0630/18/1/14
    [9]LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09
    [10]B. DEBALINA, M. KAMARAJ, S. R. CHAKRAVARTHI, N. J. VASA, R. SARATHI. Understanding the Mechanism of Nanoparticle Formation in a Wire Explosion Process by Adopting the Optical Emission Technique[J]. Plasma Science and Technology, 2013, 15(6): 562-569. DOI: 10.1088/1009-0630/15/6/14

Catalog

    Article views (249) PDF downloads (1630) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return