Advanced Search+
Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09
Citation: Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09

Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model

More Information
  • Received Date: June 25, 2013
  • The aim of this paper is to obtain relevant sets of collision cross sections of the parent ions in low pressure discharges in argon, oxygen, and nitrogen, i.e., Ar + in Ar, O 2 + in O 2 and N 2 + in N 2 . These ion data are first discussed and then validated from comparisons between the calculated transport coefficients and those measured in the literature. The elastic momentum transfer collision cross sections are determined from a semi-classical approximation for the phase shift calculation based on a 12-6-4 inter-particle potential while ion transport coefficients are determined versus the reduced electric field from Monte Carlo simulations.
  • 1. Benyoucef D, Yous. M, Belmadani B. 2012, Interna-tional Journal of Physical Sciences, 7: 5256
    2. Benyoucef D, Yous. M. 2013, IEEE Transactions on Plasma Science, 41: 829
    3.Kaplan I G. 2006, Intermolecular interactions: physi-cal picture, computational methods and model poten-tials. Wiley, New York
    4.Nelson D, Benhenni M, Yous. M, Eichwald O. 2001, J. Phys. D: Appl. Phys., 34: 3247
    5 Aquilanti V, Cappelletti D, Pirani F. 1996, Chemical Physics, 209: 299
    6 Tang K T. 1969, Physical Review, 177: 108
    7 Munn R J, Mason E A, Smith F J. 1964, The Journal of Chemical Physics, 41: 3978
    8 Phelps A V, Greene C H, Bruke JR J P. 2000, Journal of Physics B: Atomic, Molecular and Optical Physics, 33: 2965
    9 Hirschfelder J O (ed.). 2009, Advances in Chemi-cal Physics, Intermolecular Forces. Wiley-Interscience, New York, USA
    10 Langer R, Rudolph E. 1937, Physical Review, 51: 669
    11 Kramers H A. 1926, Z. Physik, 39: 828
    12 Koike T, Silverstone H J. 2009, Journal of Physics A: Mathematical and Theoretical, 42: 495206
    13 Liu X L, Xiao D M. 2007, the European Physical Jour-nal Applied Physics, 38: 269
    14 Liu Xueli, Xiao Dengming, Wang Yanan, et al. 2008, Journal of Shanghai Jiaotong University (Sciences), 13: 443
    15 Urquijo J de, Bekstein A, Ducasse O, et al. 2009, Eur. Phys. J. D, 54: 4
    16 Sakabe S, Izawa Y. 1992, Physical Review A, 45: 2086
    17 Goeckner M J, Goree J A, Sheridan T E. 1991, IEEE Transactions on Plasma Science, 19: 301
    18 Ellis H W, Pai R Y, McDaniel E W, et al. 1976, Atomic Data and Nuclear Data Tables, 17: 177
  • Related Articles

    [1]Shoujie LI, Ronger ZHENG, Yoshihiro DEGUCHI, Wangquan YE, Ye TIAN, Jinjia GUO, Ying LI, Yuan LU. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys[J]. Plasma Science and Technology, 2023, 25(4): 045510. DOI: 10.1088/2058-6272/aca5f4
    [2]Xiaonan ZHANG (张小楠), Xianxiu MEI (梅显秀), Shanshan LI (李山山). The irradiation variation of amorphous alloy FeSiB using for fusion devices induced by 2 MeV He ions[J]. Plasma Science and Technology, 2021, 23(2): 25601-025601. DOI: 10.1088/2058-6272/abd97a
    [3]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [4]Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1
    [5]Donglai WANG (王东来), Tiebing LU (卢铁兵), Yuan WANG (王源), Bo CHEN (陈博), Xuebao LI (李学宝). Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire[J]. Plasma Science and Technology, 2018, 20(5): 54008-054008. DOI: 10.1088/2058-6272/aaac26
    [6]Yuqing XIONG (熊玉卿), Hengjiao GAO (高恒蛟), Ni REN (任妮), Zhongwei LIU(刘忠伟). Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides[J]. Plasma Science and Technology, 2018, 20(3): 35507-035507. DOI: 10.1088/2058-6272/aa9cdf
    [7]Yang LIU (刘洋), Kaihong FANG (方开洪), Huiyi LV (吕会议), Jiwei LIU (刘际伟), Boyu WANG (王博宇). Hydrogenation of zirconium film by implantation of hydrogen ions[J]. Plasma Science and Technology, 2017, 19(3): 35502-035502. DOI: 10.1088/2058-6272/19/3/035502
    [8]LIN Xiaomei (林晓梅), LI Han (李晗), YAO Qinghua (姚清华). Signal Detection of Carbon in Iron-Based Alloy by Double-Pulse Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(11): 953-957. DOI: 10.1088/1009-0630/17/11/12
    [9]JIN Shuoxue (靳硕学), GUO Liping (郭立平), YANG Zheng (杨铮), ZHOU Zhongpo (周忠坡), FU Dejun (付德君), LIU Chuansheng (刘传胜), TANG Rui (唐睿), LIU Feihua (刘飞华), QIAO Yanxin (乔岩欣), et, al. Structural Characterization of Nickel-Base Alloy C-276 Irradiated with Ar Ions[J]. Plasma Science and Technology, 2012, 14(6): 548-552. DOI: 10.1088/1009-0630/14/6/26
    [10]YUE Hongyun, WU Aimin, QIN Fuwen, LI Tingju. Study on AlxNiy Alloys as Diffusion Barriers in Flexible Thin Film Solar Cells[J]. Plasma Science and Technology, 2011, 13(5): 600-603.

Catalog

    Article views (622) PDF downloads (1597) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return