Advanced Search+
WANG Xianwei(汪献伟), XIE Fei(谢飞), JIN Huan(金环). Electromagnetic Analyses of ITER Lower ELM Right Bottom Corner[J]. Plasma Science and Technology, 2014, 16(8): 800-804. DOI: 10.1088/1009-0630/16/8/12
Citation: WANG Xianwei(汪献伟), XIE Fei(谢飞), JIN Huan(金环). Electromagnetic Analyses of ITER Lower ELM Right Bottom Corner[J]. Plasma Science and Technology, 2014, 16(8): 800-804. DOI: 10.1088/1009-0630/16/8/12

Electromagnetic Analyses of ITER Lower ELM Right Bottom Corner

More Information
  • Received Date: August 26, 2013
  • ELM (edge localized mode) coils are key components of ITER that suppress the edge localized mode phenomenon. A giant electromagnetic force is generated during normal operations by the current flowing in the ELM coils interacting with the external background field. The Lorentz force will induce Tresca stress in the ELM coils. If the load goes beyond the allowable threshold, the coils can hardly satisfy the safety requirements. The right-hand bottom corner was chosen to perform our electromagnetic analyses. Based on the Maxwell equation, the detailed magnetic field and Lorentz force were calculated. By use of the finite element software ANSYS, the Tresca stress was extracted and evaluated based on our analytical design. The present analysis aims to verify the feasibility of the current design. It can also serve as guidance for fabrication and structural optimization.
  • 1.Kalish M, Heizenroeder P, Brooks A, et al. 2011, ITER In-vessel Coil Design and R&D. IEEE/NPSS 24th Symposium on Fusion Engineering, San Diego, CA, United States
    2.Heizenroeder P, Brooks A, et al. 2009, An Overview of the ITER In-vessel Coil Systems. 23rd IEEE/NPSS Symposium on Fusion Engineering, San Diego, CA, United States
    3.Kalinin G, Gauster W, Matera R, et al. 1996, Journal of Nuclear Materials, 233: 9
    4.Matera R, Federici B. 1996, Journal of Nuclear Mate-rials, 233: 17
    5.Aymar R. 1998, ITER Project-Status and Prospects. IEEE/NPSS 17th Symposium on Fusion Engineering, San Diego, CA, United States
    6.Ioki K, Barabash V, Cardella A, et al. 1998, Journal of Nuclear Materials, 258: 17
    7.Kalinin G, Barabash V, Cardella A, et al. 2000, Jour-nal of Nuclear Materials, 283: 10
    8.Laxmikant K, Urankar L. 1980, IEEE Transactions on Magnetics, 16: 1283
    9.Chu Yuesen. 1998, IEEE Transactions on Magnetics, 34: 502
    10 Laxmikant K, Urankar L. 1982, IEEE Transactions on Magnetics, 18: 1860
    11 Azzerboni B, Cardelli E. 1996, IEEE Transactions on Magnetics, 32: 547
    12 Onuki T, Wakao S. 1995, IEEE Transactions on Mag-netics, 31: 1476
    13 Bellina F, Stella A. 1988, IEEE Transactions on Mag-netics, 24: 47
    14 Bruno Azzerboni, Ermanno Cardelli, Marco Raugi, et al. 1991, IEEE Transactions on Magnetics, 27: 750
    15 Bruno Azzerboni, Ermanno Cardelli, Marco Raugi, et al. 1993, IEEE Transactions on Magnetics, 29: 2090
    16.Feng Cizhang. 1993, Electromagnetic Field. Higher Education Press, Beijing (in Chinese)
  • Related Articles

    [1]Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c
    [2]Zhen ZHENG (郑振), Nong XIANG (项农), Jiale CHEN (陈佳乐), Siye DING (丁斯晔), Hongfei DU (杜红飞), Guoqiang LI (李国强), Yifeng WANG (王一丰), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Bo LYU (吕波), Qing ZANG (臧庆). Kinetic equilibrium reconstruction for the NBI-and ICRH-heated H-mode plasma on EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65103-065103. DOI: 10.1088/2058-6272/aab262
    [3]Yi WU (吴翊), Yufei CUI (崔彧菲), Jiawei DUAN (段嘉炜), Hao SUN (孙昊), Chunlin WANG (王春林), Chunping NIU (纽春萍). Influence of arc current and pressure on non-chemical equilibrium air arc behavior[J]. Plasma Science and Technology, 2018, 20(1): 14021-014021. DOI: 10.1088/2058-6272/aa9325
    [4]Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26
    [5]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [6]Constantine L. XAPLANTERIS, Eleni D. FILIPPAKI. Influence of an External DC Electric Current on Plasma Cleaning Rate: an Application on the Enlarged Plasma-Surface Theory[J]. Plasma Science and Technology, 2013, 15(5): 448-454. DOI: 10.1088/1009-0630/15/5/11
    [7]WANG Zhongtian (王中天), WANG Long (王龙), LONG Yongxing (龙永兴), DONG Jiaqi (董家齐), HE Zhixiong (何志雄), LIU Yu (刘宇), TANG Changjian (唐昌建). Shaping Effects of the E-Fishbone in Tokamaks[J]. Plasma Science and Technology, 2013, 15(1): 12-16. DOI: 10.1088/1009-0630/15/1/03
    [8]LI Li(李莉), LIU Yue (刘悦), XU Xinyang(许欣洋), XIA Xinnian(夏新念). The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks[J]. Plasma Science and Technology, 2012, 14(1): 14-19. DOI: 10.1088/1009-0630/14/1/04
    [9]HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430.
    [10]Yukihiro TOMITA, Gakushi KAWAMURA, HUANG Zhihui, PAN Yudong, YAN Longwen. Dust Charging and Dynamics in Tokamaks[J]. Plasma Science and Technology, 2011, 13(1): 11-14.

Catalog

    Article views (187) PDF downloads (1941) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return