Advanced Search+
LI Dehui(李德徽), XIANG Nong(项农), LIN Yu(林郁), WANG Xueyi(汪学毅), YANG Cheng(杨程), MA Jun(马骏). Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region[J]. Plasma Science and Technology, 2014, 16(9): 821-825. DOI: 10.1088/1009-0630/16/9/03
Citation: LI Dehui(李德徽), XIANG Nong(项农), LIN Yu(林郁), WANG Xueyi(汪学毅), YANG Cheng(杨程), MA Jun(马骏). Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region[J]. Plasma Science and Technology, 2014, 16(9): 821-825. DOI: 10.1088/1009-0630/16/9/03

Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region

Funds: ∗ supported by Science Foundation of Institute of Plasma Physics Chinese Academy of Sciences (No. Y35ETY1304), the JSPS- NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (No. 11261140328), National ITER Plans Program of China (No. 2013GB111002) and National Natural Science Foundation of China (No. 11105178)
More Information
  • Received Date: August 22, 2013
  • Particle-in-cell (PIC) simulation method has been proved to be a good candidate to study the interactions between plasmas and radio-frequency waves. However, for waves in the lower hybrid range of frequencies, a full PIC simulation is not efficient due to its high computational cost. In this work, a gyro-kinetic electron and fully-kinetic ion (GeFi) particle simulation model is applied to study the propagations and mode conversion processes of lower hybrid waves (LHWs) in plasmas. With this method, the computational efficiency of LHW simulations is greatly increased by using a larger grid size and time step. The simulation results in the linear regime are validated by comparison with the linear theory.
  • 1 Fisch N J. 1987, Reviews of Modern Physics, 59: 175
    2 Gormezana C. 1986, Plasma Phys. Control. Fusion, 28:1365
    3 Bonoli P T, Ott E. 1981, Phys. Rev. Lett., 46: 424
    4 Bonoli P T, Ott E. 1982, Phys. Fluids, 25: 359
    5 Ignat D W. 1981, Phys. Fluids, 24: 1110
    6 Brambilla M. 1986, Computer Phys. Rept., 4: 71
    7 Ignat D W, Valeo E J, Jardin S C. 1994, Nucl. Fusion,34: 837
    8 Wright J C, Valeo E J, Phillips C K, et al. 2008, Commun. Comput. Phys., 4: 545
    9 Porkolab M. 1977, Phys. Fluids, 20: 2058
    10 Porkolab M, Bernabei S, Hooke W M, et al. 1977,Phys. Rev. Lett., 38: 230
    11 Jenkins T G, Austin T M, Smithe D N, et al. 2013,Phys. Plasmas, 20: 012116
    12 Xiang N, Cary J R. 2011, Phys. Plasmas, 18: 122107
    13 Stock A, Neudorfer J, Riedlinger M, et al. 2012, IEEE Trans. Plasma Science, 40: 1860
    14 Neudorfer J, Stock A, Schneider R, et al. 2013, IEEE Trans. Plasma Science, 41: 87
    15 Ngadjeu A, Faudot E, Gunn J, et al. 2009, AIP Conf.Proc., 1187: 161
    16 Austin T M, Smithe D N. 2011, AIP Conf. Proc., 1406:377
    17 Rantamaki K M, Pattikangas T J H, Karttunen S J,et al. 1999, Plasma Phys. Control. Fusion, 41: 1125
    18 Rantamaki K M, Pattikangas T J H, Karttunen S J,et al. 2002, Plasma Phys. Control. Fusion, 44: 1349
    19 Bae Y S, Cho M H, Namkung W. 2004, Journal of the Korean Physical Society, 44: 1207
    20 Bret A, Dieckmann M E. 2010, Phys. Plasmas, 17:032109
    21 Lin Y, Wang X, Lin Z, et al. 2005, Plasma Phys. Control. Fusion, 47: 657
    22 Lin Y, Wang X, Chen L, et al. 2011, Plasma Phys.Control. Fusion, 53: 054013
    23 Wang X Y, Lin Y, Chen L, et al. 2011, Phys. Plasmas,18: 122102
    24 Qi L, Wang X Y, Lin Y. 2013, Phys. Plasmas, 20:062107
    25 Bonoli P T, Englade R C. 1986, Phys. Fluids, 29: 2937
    26 Stix T H. 1965, Phys. Rev. Lett., 15: 878
    27 Ushigusa K. 1999, Lower hybrid current drive in tokamak plasmas. Japan Atomic Energy Research Institute, Ibaraki-ken, p.1339
  • Related Articles

    [1]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [2]Dianlin ZHENG (郑典麟), Kai ZHANG (张凯), Zhengying CUI (崔正英), Ping SUN (孙平), Chunfeng DONG (董春凤), Ping LU (卢平), Bingzhong FU (傅炳忠), Zetian LIU (刘泽田), Zhongbing SHI (石中兵), Qingwei YANG (杨青巍). High-speed VUV spectroscopy for edge impurity line emission measurements in HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105103. DOI: 10.1088/2058-6272/aacf3d
    [3]FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02
    [4]WU Yifei (吴益飞), REN Zhigang (任志刚), FENG Ying (冯英), LI Mei (李美), ZHANG Hantian (张含天). Analysis of Fault Arc in High-Speed Switch Applied in Hybrid Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 299-304. DOI: 10.1088/1009-0630/18/3/14
    [5]GAO Xiangdong (高向东), LIU Guiqian (刘桂谦). Elucidation of Metallic Plume and Spatter Characteristics Based on SVM During High-Power Disk Laser Welding[J]. Plasma Science and Technology, 2015, 17(1): 32-36. DOI: 10.1088/1009-0630/17/1/07
    [6]MING Tingfeng (明廷凤), Satoshi OHDACHI, Yasuhiro SUZUKI, LHD Experiment Group. Estimate of the Deposition Profile of Carbon Pellets Using a High-Speed VUV Imaging System in the LHD[J]. Plasma Science and Technology, 2013, 15(12): 1178-1184. DOI: 10.1088/1009-0630/15/12/03
    [7]LI Wenqin (李文琴 ), WEN Xiaoqiong ( 温小琼 ), ZHANG Jialiang (张家良). Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface[J]. Plasma Science and Technology, 2013, 15(10): 1020-1024. DOI: 10.1088/1009-0630/15/10/11
    [8]CAO Hongrui (曹宏睿), LI Shiping (李世平), XU Xiufeng (徐修峰), Yuan Guoliang (袁国梁), YANG Qingwei(杨青巍), YIN Zejie (阴泽杰). A High-Speed Baseline Restorer for Neutron Flux Detection in ITER[J]. Plasma Science and Technology, 2012, 14(11): 1008-1010. DOI: 10.1088/1009-0630/14/11/09
    [9]CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12
    [10]WANG Teng (王腾), GAO Xiangdong (高向东), Katayama SEIJI, JIN Xiaoli (金小莉). Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding[J]. Plasma Science and Technology, 2012, 14(3): 245-251. DOI: 10.1088/1009-0630/14/3/11

Catalog

    Article views (185) PDF downloads (1115) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return