Advanced Search+
ZHOU Weimin (周维民), GU Yuqiu (谷渝秋), WU Fengjuan (吴凤娟), ZHANG Zhimeng (张智猛), SHAN Lianqiang (单连强), CAO Leifeng (曹磊峰), ZHANG Baohan (张保汉). Focusing of Intense Laser via Parabolic Plasma Concave Surface[J]. Plasma Science and Technology, 2015, 17(12): 996-999. DOI: 10.1088/1009-0630/17/12/03
Citation: ZHOU Weimin (周维民), GU Yuqiu (谷渝秋), WU Fengjuan (吴凤娟), ZHANG Zhimeng (张智猛), SHAN Lianqiang (单连强), CAO Leifeng (曹磊峰), ZHANG Baohan (张保汉). Focusing of Intense Laser via Parabolic Plasma Concave Surface[J]. Plasma Science and Technology, 2015, 17(12): 996-999. DOI: 10.1088/1009-0630/17/12/03

Focusing of Intense Laser via Parabolic Plasma Concave Surface

Funds: supported by National Natural Science Foundation of China (Nos. 11174259, 11175165), and the Dual Hundred Foundation of China Academy of Engineering Physics
More Information
  • Received Date: October 15, 2014
  • Since laser intensity plays an important role in laser plasma interactions, a method of increasing laser intensity – focusing of an intense laser via a parabolic plasma concave surface – is proposed and investigated by three-dimensional particle-in-cell simulations. The geometric focusing via a parabolic concave surface and the temporal compression of high harmonics increased the peak intensity of the laser pulse by about two orders of magnitude. Compared with the improvement via laser optics approaches, this scheme is much more economic and appropriate for most femtosecond laser facilities.
  • 1 Strickland D and Mourou G. 1985, Optics Communications, 56: 219 2 Wilks S C. 1993, Physics of Fluids B: Plasma Physics,5: 2603 3 Mason R J. 2006, Physical Review Letters, 96: 035001 4 Kemp A J, Sentoku Y and Tabak M. 2008, Physical Review Letters, 101: 075004 5 Ping Y, Shepherd R, Lasinski B F, et al. 2008, Physical Review Letters, 100: 085004 6 Clark E L, Krushelnick K, Davies J R, et al. 2000,Physical Review Letters, 84: 670 7 Wilks S C, Langdon A B, Cowan T E, et al. 2001,Physics of Plasmas, 8: 542 8 Flippo K A, d 0 Humi` eres E, Gaillard S A, et al. 2008,Physics of Plasmas, 15: 056709 9 Hegelich B M, Albright B J, Cobble J, et al. 2006,Nature, 439: 441 10 Tajima T and Dawson J M. 1979, Physical Review Letters, 43: 267 11 Sprangle P, Esarey E, Ting A, et al. 1988, Applied Physics Letters, 53: 2146 12 Malka V, Fritzler S, Lefebvre E, et al. 2002, Science,298: 1596 13 Mangles S P D, Murphy C D, Najmudin Z, et al. 2004,Nature, 431: 535 14 Yanovsky V, Chvykov V, Kalinchenko G, et al. 2008,Opt. Express, 16: 2109 15 Gordienko S, Pukhov A, Shorokhov O, et al. 2005,Physical Review Letters, 94: 103903 16 Carman R L, Forslund D W and Kindel J M. 1981,Physical Review Letters, 46: 29 17 Bulanov S V, Naumova N M and Pegoraro F. 1994,Physics of Plasmas, 1: 745 18 Gibbon P. 1996, Physical Review Letters, 76: 50 19 Zhou W, Gu Y, Hong W, et al. 2010, Laser and Particle Beams, 28: 585
  • Related Articles

    [1]Yongpeng MO, Zongqian SHI, Shenli JIA. Study of post-arc residual plasma dissipation process of vacuum circuit breakers based on a 2D particle-in-cell model[J]. Plasma Science and Technology, 2022, 24(4): 045401. DOI: 10.1088/2058-6272/ac5235
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Dan ZHANG (张丹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Effect of lens focusing distance on laser-induced silicon plasmas at different sample temperatures[J]. Plasma Science and Technology, 2019, 21(3): 34009-034009. DOI: 10.1088/2058-6272/aaec9b
    [4]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [5]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [6]ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04
    [7]GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02
    [8]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
    [9]HU Zhidan(胡志丹), SHENG Zhengming (盛政明), Ding Wenjun (丁文君), WANG Weimin (王伟民), DONG Quanli (董全力), ZHANG Jie(张杰), et al. Electromagnetic Emission from Laser Wakefields in Magnetized Underdense Plasmas[J]. Plasma Science and Technology, 2012, 14(10): 874-879. DOI: 10.1088/1009-0630/14/10/04
    [10]JI Liangliang (吉亮亮), SHEN Baifei (沈百飞), ZHANG Xiaomei (张晓梅), WANG Wenpeng (王文鹏), YU Yahong (郁亚红), WANG Xiaofeng (王晓峰), YI Longqing (易龙卿), SHI Yin (时银), et al. Plasma Approach for Generating Ultra-Intense Single Attosecond Pulse[J]. Plasma Science and Technology, 2012, 14(10): 859-863. DOI: 10.1088/1009-0630/14/10/01

Catalog

    Article views (281) PDF downloads (737) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return